暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

【经验分享】目标检测 VOC 格式数据集制作

极智视界 2021-08-19
889

本教程详细介绍了 VOC 格式数据集的制作方法。


1、目录结构

 

   其中 makeTXT.py 用于生成 VOCdevkit/VOC/ImageSets/Main/*.txt,voc_label.py 根据 VOCdevkit/VOC/Annotations/* 、VOCdevkit/VOC/images/* 和 VOCdevkit/VOC/ImageSets/Main/*.txt 生成 VOCdevkit/labels/*.txt、VOCdevkit/VOC/test.txt(train.txt、val.txt)


2、Annotations

 可以用 LabelImg 对训练图片进行标注,会得到 *.xml,看起来像这样:


3、images

这个没啥好说的,就是训练的图片。


4、ImageSets/Main

 由 makeTXT.py 生成 VOCdevkit/VOC/ImageSets/Main/* .txt 文件,包括 test.txt、train.txt、trainval.txt、val.txt。各文件里面的内容看起来差不多,像这样:


5、labels

 由 voc_label.py 生成,来看一下 labels/*.txt 里的文件内容,像这样:


6、makeTXT.py

 这个脚本用于生成 VOCdevkit/voc/ImageSets/Main 下的 *.txt。

 来看一下 makeTXT.py 脚本的内容:

import os
import random

trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = 'VOCdevkit/VOC/Annotations'
txtsavepath = 'VOCdevkit/VOC/ImageSets'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open('VOCdevkit/VOC/ImageSets/Main/trainval.txt', 'w')
ftest = open('VOCdevkit/VOC/ImageSets/Main/test.txt', 'w')
ftrain = open('VOCdevkit/VOC/ImageSets/Main/train.txt', 'w')
fval = open('VOCdevkit/VOC/ImageSets/Main/val.txt', 'w')

for i in list:
  name = total_xml[i][:-4] + '\n'
   if i in trainval:
      ftrainval.write(name)
       if i in train:
          ftest.write(name)
       else:
          fval.write(name)
   else:
      ftrain.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()


7、voc_label.py

 这个脚本主要用于生成 VOCdevkit/VOC/labels/*.txt 以及 最终训练要用的 VOCdevkit/VOC/train.txt、VOCdevkit/VOC/test.txt 和 VOCdevkit/VOC/val.txt。

来看一下 voc_label.py 脚本的内容:

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join

sets = ['train', 'test','val']

classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus",
   "car", "cat", "chair", "cow", "diningtable", "dog", "horse",
   "motorbike", "person", "pottedplant", "sheep", "sofa", "train",
   "tvmonitor"]

def convert(size, box):
  dw = 1./size[0]
  dh = 1./size[1]
  x = (box[0] + box[1])/2.0
  y = (box[2] + box[3])/2.0
  w = box[1] - box[0]
  h = box[3] - box[2]
  x = x*dw
  w = w*dw
  y = y*dh
  h = h*dh
  return (x,y,w,h)

def convert_annotation(image_id):
  in_file = open('VOCdevkit/VOC/Annotations/%s.xml' % (image_id))
  out_file = open('VOCdevkit/VOC/labels/%s.txt' % (image_id), 'w')
  tree = ET.parse(in_file)
  root = tree.getroot()
  size = root.find('size')
  w = int(size.find('width').text)
  h = int(size.find('height').text)
   for obj in root.iter('object'):
       if obj.find('difficult'):
          difficult = obj.find('difficult').text
       else:
          difficult = 0
      cls = obj.find('name').text
       if cls not in classes or int(difficult) == 1:
          continue
      cls_id = classes.index(cls)
      xmlbox = obj.find('bndbox')
      b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
            float(xmlbox.find('ymax').text))
      bb = convert((w, h), b)
      out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
print(wd)

for image_set in sets:
   if not os.path.exists('VOCdevkit/VOC/labels/'):
      os.makedirs('VOCdevkit/VOC/labels/')
  image_ids = open('VOCdevkit/VOC/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
  list_file = open('VOCdevkit/VOC/%s.txt' % (image_set), 'w')
   for image_id in image_ids:
      list_file.write('VOCdevkit/VOC/images/%s.jpg\n' % (image_id))
      convert_annotation(image_id)
  list_file.close()


 收工~


声明:转载请说明出处

扫描下方二维码关注【极智视界】公众号,获取更多实践项目资源和读书分享,让我们用极致+极客的心态来迎接AI !

文章转载自极智视界,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论