暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

关于矩阵之行列式、方阵、逆矩阵的理解

追梦IT人 2021-08-22
4201

如果矩阵Am等于n,称为矩阵An阶矩阵(或n阶方阵)

 

从左上到右下的对角线为主对角线,从右上到左下的对角线为次对角线

 

行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)| A | ,可以看作在几何空间中,一个线性变换对面积体积的影响

行列式的性质:

性质1:如果(a,b)=(1,0),(c,d)=(0,1)则平行四边形变成正方形,面积=1A为单位阵

性质2:若A有相同的两行,则det(A)=0. 看一个极端情况,如果(a,b)=(c,d),即向量(a,b)(c,d)重合,面积肯定为0

性质3det(A)对单独任一行满足线性关系,即将(a,b)伸缩t倍,另一条边不变,面积也伸缩t

性质4:交换两行,det(A)变号。将面积定向处理,右手定则是大家普遍遵守的,因此,行1,行2对应向量的方向满足右手定则,则定义det(A)为正,否则为负。

性质5:若矩阵中有一行为全0行,则行列式为0.利用性质3,全0行,提出一个因子0,行列式肯定为0.

性质6:从一行中减去其它行的几倍,行列式不变。

性质7:若矩阵A为三角阵,则行列式等于对角元上元素的乘积。

性质8A是奇异阵且不可逆,行列式为0;反之,行列式不为0

性质9:矩阵AB的行列式等于A的行列式乘以B的行列式行列式的含义是面积(体积)的放大倍数,AB可以看成是级联系统,级联系统的放大倍数等于分别每一级放大倍数的乘积。

性质10A转置的行列式等于A的行列式。行列式的含义是体积的放大倍数,转置后,体积放大倍数也没有发生变化。

 

 

假设为3*3的方阵

 

A = a13a21a32 + a12a23a31 + a11a22a33 - a11a23a32 - a12a21a33 - a13a22a31

 

代数余子式求法

 

 

具体推导如下:

 

A是一个n阶矩阵,若存在另一个n阶矩阵B,使得:AB=BA=E ,则称方阵A可逆,并称方阵BA的逆矩阵。如果A不存在逆矩阵,那么A称为奇异矩阵。A的逆矩阵记作A-1

矩阵的逆具有以下性质:

如果矩阵A是可逆的,那么矩阵A的逆矩阵是唯一的。

A的逆矩阵的逆矩阵还是A,记作(A-1)-1=A

可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T

若矩阵A可逆,则矩阵A满足消去律,即AB=AC => B=C

矩阵A可逆的充要条件是行列式|A|不等于0

逆矩阵求解公式:

 

 

求解线性方程组

一、消元法

二、矩阵的初等变换求解

文章转载自追梦IT人,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论