暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

Machine Learning Vocabulary

架构与英文 2021-07-17
347



A few years ago, I was studying Machine Learning in school at this moment. In that time, I feel that playing Machine Learning is the best thing in the world, but what's the most unacceptable is that when it's applied to reality, it's much more complicated than I could think.


There are some contents for beginners:


Supervised Learning 监督学习

Unsupervised Learning 无监督学习

Reinforcement Learning 强化学习

 

Top 10 machine learning algorithms  10大机器学习算法

 

Decision tree   决策树/判定树

K-Means Clustering K –均值聚类

K-Nearest Neighbor Algorithm/KNN        K近邻算法

Support Vector Machine/SVM          支持向量机

Naive Bayes Classifier       朴素贝叶斯分类器

Gradient Boost 和 Adaboost 算法

Random Forest Algorithm        随机森林算法

Neural Network       神经网络

Markov Chains马尔可夫链

Logistic Regression逻辑回归


Learningprocedures 学习过程



Data Set 数据集

train set  训练集

validation set 验证集

test set 测试集 

 

Training Models 训练模型

-> Loss Function损失函数

-> Optimization Algorithms 优化算法

  -> Gradient Descent Method 梯度下降法

  -> Newtonian method 牛顿法

  -> Momentum动量

  -> Nesterov Momentum

  -> Adagrad  Adaptive Gradient

  -> Adam   Adaptive Moment Estimation

 

Estimate model 评估模型

-> Accuracy 准确率

-> Precision 精确率

-> Recall 召回率

-> True Positive Rate 真阳性率

-> Mean Square Error (MSE, RMSE)         平均方差

-> Absolute Error (MAE, RAE)  绝对误差


The above is just the basic content about machine learning.

Have you ever been crazy for Machine Learning ? 

Stay hungry, Stay foolish !



感谢关注,谢谢


文章转载自架构与英文,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论