Q1:索引有什么作用?
索引也叫键,是存储引擎用于快速找到记录的一种数据结构。索引对于良好的性能很关键,尤其是当表中数据量越来越大时,索引对性能的影响愈发重要。在数据量较小且负载较低时,不恰当的索引对性能的影响可能还不明显,但数据量逐渐增大时,性能会急剧下降。
索引大大减少了服务器需要扫描的数据量、可以帮助服务器避免排序和临时表、可以将随机 IO 变成顺序 IO。但索引并不总是最好的工具,对于非常小的表,大部分情况下会采用全表扫描。对于中到大型的表,索引就非常有效。但对于特大型的表,建立和使用索引的代价也随之增长,这种情况下应该使用分区技术。
在MySQL中,首先在索引中找到对应的值,然后根据匹配的索引记录找到对应的数据行。索引可以包括一个或多个列的值,如果索引包含多个列,那么列的顺序也十分重要,因为 MySQL 只能使用索引的最左前缀。
Q2:谈一谈 MySQL 的 B-Tree 索引
大多数 MySQL 引擎都支持这种索引,但底层的存储引擎可能使用不同的存储结构,例如 NDB 使用 T-Tree,而 InnoDB 使用 B+ Tree。
B-Tree 通常意味着所有的值都是按顺序存储的,并且每个叶子页到根的距离相同。B-Tree 索引能够加快访问数据的速度,因为存储引擎不再需要进行全表扫描来获取需要的数据,取而代之的是从索引的根节点开始进行搜索。根节点的槽中存放了指向子节点的指针,存储引擎根据这些指针向下层查找。通过比较节点页的值和要查找的值可以找到合适的指针进入下层子节点,这些指针实际上定义了子节点页中值的上限和下限。最终存储引擎要么找到对应的值,要么该记录不存在。叶子节点的指针指向的是被索引的数据,而不是其他的节点页。
B-Tree索引的限制:
如果不是按照索引的最左列开始查找,则无法使用索引。
不能跳过索引中的列,例如索引为 (id,name,sex),不能只使用 id 和 sex 而跳过 name。
如果查询中有某个列的范围查询,则其右边的所有列都无法使用索引。
Q3:了解 Hash 索引吗?
哈希索引基于哈希表实现,只有精确匹配索引所有列的查询才有效。对于每一行数据,存储引擎都会对所有的索引列计算一个哈希码,哈希码是一个较小的值,并且不同键值的行计算出的哈希码也不一样。哈希索引将所有的哈希码存储在索引中,同时在哈希表中保存指向每个数据行的指针。
只有 Memory 引擎显式支持哈希索引,这也是 Memory 引擎的默认索引类型。
因为索引自身只需存储对应的哈希值,所以索引的结构十分紧凑,这让哈希索引的速度非常快,但它也有一些限制:
哈希索引数据不是按照索引值顺序存储的,无法用于排序。
哈希索引不支持部分索引列匹配查找,因为哈希索引始终是使用索引列的全部内容来计算哈希值的。例如在数据列(a,b)上建立哈希索引,如果查询的列只有a就无法使用该索引。
哈希索引只支持等值比较查询,不支持任何范围查询。
Q4:什么是自适应哈希索引?
自适应哈希索引是 InnoDB 引擎的一个特殊功能,当它注意到某些索引值被使用的非常频繁时,会在内存中基于 B-Tree 索引之上再创键一个哈希索引,这样就让 B-Tree 索引也具有哈希索引的一些优点,比如快速哈希查找。这是一个完全自动的内部行为,用户无法控制或配置,但如果有必要可以关闭该功能。
Q5 :什么是空间索引?
MyISAM 表支持空间索引,可以用作地理数据存储。和 B-Tree 索引不同,这类索引无需前缀查询。空间索引会从所有维度来索引数据,查询时可以有效地使用任意维度来组合查询。必须使用 MySQL 的 GIS 即地理信息系统的相关函数来维护数据,但 MySQL 对 GIS 的支持并不完善,因此大部分人都不会使用这个特性。
Q6:什么是全文索引?
通过数值比较、范围过滤等就可以完成绝大多数需要的查询,但如果希望通过关键字匹配进行查询,就需要基于相似度的查询,而不是精确的数值比较,全文索引就是为这种场景设计的。
MyISAM 的全文索引是一种特殊的 B-Tree 索引,一共有两层。第一层是所有关键字,然后对于每一个关键字的第二层,包含的是一组相关的"文档指针"。全文索引不会索引文档对象中的所有词语,它会根据规则过滤掉一些词语,例如停用词列表中的词都不会被索引。
Q7:什么是聚簇索引?
聚簇索引不是一种索引类型,而是一种数据存储方式。InnoDB 的聚簇索引实际上在同一个结构中保存了 B-Tree 索引和数据行。当表有聚餐索引时,它的行数据实际上存放在索引的叶子页中,因为无法同时把数据行存放在两个不同的地方,所以一个表只能有一个聚簇索引。
优点:① 可以把相关数据保存在一起。② 数据访问更快,聚簇索引将索引和数据保存在同一个 B-Tree 中,因此获取数据比非聚簇索引要更快。③ 使用覆盖索引扫描的查询可以直接使用页节点中的主键值。
缺点:① 聚簇索引最大限度提高了 IO 密集型应用的性能,如果数据全部在内存中将会失去优势。② 更新聚簇索引列的代价很高,因为会强制每个被更新的行移动到新位置。③ 基于聚簇索引的表插入新行或主键被更新导致行移动时,可能导致页分裂,表会占用更多磁盘空间。④ 当行稀疏或由于页分裂导致数据存储不连续时,全表扫描可能很慢。
Q8:什么是覆盖索引?
覆盖索引指一个索引包含或覆盖了所有需要查询的字段的值,不再需要根据索引回表查询数据。覆盖索引必须要存储索引列的值,因此 MySQL 只能使用 B-Tree 索引做覆盖索引。
优点:① 索引条目通常远小于数据行大小,可以极大减少数据访问量。② 因为索引按照列值顺序存储,所以对于 IO 密集型防伪查询回避随机从磁盘读取每一行数据的 IO 少得多。③ 由于 InnoDB 使用聚簇索引,覆盖索引对 InnoDB 很有帮助。InnoDB 的二级索引在叶子节点保存了行的主键值,如果二级主键能覆盖查询那么可以避免对主键索引的二次查询。
Q9:你知道哪些索引使用原则?
建立索引
对查询频次较高且数据量比较大的表建立索引。索引字段的选择,最佳候选列应当从 WHERE 子句的条件中提取,如果 WHERE 子句中的组合比较多,应当挑选最常用、过滤效果最好的列的组合。业务上具有唯一特性的字段,即使是多个字段的组合,也必须建成唯一索引。
使用前缀索引
索引列开始的部分字符,索引创建后也是使用硬盘来存储的,因此短索引可以提升索引访问的 IO 效率。对于 BLOB、TEXT 或很长的 VARCHAR 列必须使用前缀索引,MySQL 不允许索引这些列的完整长度。前缀索引是一种能使索引更小更快的有效方法,但缺点是 MySQL 无法使用前缀索引做 ORDER BY 和 GROUP BY,也无法使用前缀索引做覆盖扫描。
选择合适的索引顺序
当不需要考虑排序和分组时,将选择性最高的列放在前面。索引的选择性是指不重复的索引值和数据表的记录总数之比,索引的选择性越高则查询效率越高,唯一索引的选择性是 1,因此也可以使用唯一索引提升查询效率。
删除无用索引
MySQL 允许在相同列上创建多个索引,重复的索引需要单独维护,并且优化器在优化查询时也需要逐个考虑,这会影响性能。重复索引是指在相同的列上按照相同的顺序创建的相同类型的索引,应该避免创建重复索引。如果创建了索引 (A,B) 再创建索引 (A) 就是冗余索引,因为这只是前一个索引的前缀索引,对于 B-Tree 索引来说是冗余的。解决重复索引和冗余索引的方法就是删除这些索引。除了重复索引和冗余索引,可能还会有一些服务器永远不用的索引,也应该考虑删除。
Q10:索引失效的情况有哪些?
如果索引列出现了隐式类型转换,则 MySQL 不会使用索引。常见的情况是在 SQL 的 WHERE 条件中字段类型为字符串,其值为数值,如果没有加引号那么 MySQL 不会使用索引。
如果 WHERE 条件中含有 OR,除非 OR 前使用了索引列而 OR 之后是非索引列,索引会失效。
MySQL 不能在索引中执行 LIKE 操作,这是底层存储引擎 API 的限制,最左匹配的 LIKE 比较会被转换为简单的比较操作,但如果是以通配符开头的 LIKE 查询,存储引擎就无法做比较。这种情况下 MySQL 只能提取数据行的值而不是索引值来做比较。
如果查询中的列不是独立的,则 MySQL 不会使用索引。独立的列是指索引列不能是表达式的一部分,也不能是函数的参数。
对于多个范围条件查询,MySQL 无法使用第一个范围列后面的其他索引列,对于多个等值查询则没有这种限制。
如果 MySQL 判断全表扫描比使用索引查询更快,则不会使用索引。
索引文件具有 B-Tree 的最左前缀匹配特性,如果左边的值未确定,那么无法使用此索引。
--
知识分享,时代前行!
~~ 时代Java
还有更多好文章……
请查看历史文章和官网,
↓有分享,有收获~




