暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

Python之pygame库初探

心在远方AND走在路上 2021-09-11
3286

Why learn  pygame

Pygame是跨平台Python模块,专为电子游戏设计,包含图像、声音。建立在SDL基础上,允许实时电子游戏研发而无需被低级语言(如机器语言和汇编语言)束缚,是一个高可移植性的模块可以支持多个操作系统。用它来开发小游戏非常适合


一、pygame的安装

我们默认你已经安装pycharm,且配置好基于python3.x的开发环境(如果还未配置,请参考我之前的教程)。打开pycharm的Terminal[终端],输入
    pip install pygame

    这是最简单,最不易出错的一种方式,且不用区分操作系统的区别。安装完成后我们使用下面的方式检查一下是否安装成功。

    打开pycharm的PythonConsole,然后输入

      import pygame

      安装成功便会如下图一般显示pygame的版本号。

        pygame 2.0.1 (SDL 2.0.14, Python 3.8.5)
        Hello from the pygame community. https://www.pygame.org/contribute.html




        二、pygame的最小系统----pygame版"yangchao"

          #!/usr/bin/env python
          # -*- coding: utf-8 -*-
          # ****** Auto : YangGaoChao ******************************
          # **** A beautiful day has begun. come on, Xiao Yang******
          # ***** Cretive time : 2021-05-08 23:10 ******************




          import pygame
          from pygame.locals import *
          import sys




          # 使用pygame之前必须初始化
          pygame.init()
          # 设置用于显示的窗口,单位为像素
          screen = pygame.display.set_mode((1000, 800))
          # 设置标题
          pygame.display.set_caption("yangchao")
          while True:
          for event in pygame.event.get(): # 循环获取事件
          if event.type == QUIT: # 若检测到事件类型为退出,则退出系统
          pygame.quit()
          sys.exit()
          pygame.display.update() # 更新屏幕内容



            # ----------图像相关操作-----------
            # 加载图片文件,返回图片对象
            image = pygame.image.load("图片路径")
            # 获得图片矩形对象 -> Rect(x, y, width, height)
            # 默认情况下左上角的坐标是 (0, 0)
            rect = image.get_rect(centerx=x, centery=y)
            # 在原位置基础上,移动指定的偏移量 (x, y 增加)
            rect.move_ip(num1, num2)
            # 判断两个矩形是否相交,相交返回True,否则返回False
            flag = pygame.Rect.colliderect(rect1, rect2)
            # 将图片对象按指定宽高缩放,返回新的图片对象
            trans_image = pygame.transform.scale(image, (WINDOWWIDTH, WINDOWHEIGHT))


              # 常见事件类型:
              # QUIT 关闭窗口
              # KEYDOWN 键盘按键
              # 获得当前所有持续按键 bools_tuple
              # 获得所有事件的列表
              event_list = pygame.event.get()
              for event in event_list:
              # 1. 鼠标点击关闭窗口事件
              if event.type == pygame.QUIT:
              print("关闭了窗口")
              sys.exit()


              # 2. 键盘按下事件
              if event.type == pygame.KEYDOWN:
              # 判断用户按下的键是否是a键
              if event.key == pygame.K_a:
              print("按了 a ")
              if event.key == pygame.K_UP:
              print("按了 方向键上")


              # 3. 获得当前键盘所有按键的状态(按下,没有按下),返回bool元组
              pressed_keys = pygame.key.get_pressed()




              if pressed_keys[pygame.K_w] or pressed_keys[pygame.K_UP]:
              print("按了 w 键,或者 方向键上")
                # 加载背景音乐
                pygame.mixer.music.load("./res/音乐文件名")
                # 循环播放背景音乐
                pygame.mixer.music.play(-1)
                # 停止背景音乐
                pygame.mixer.music.stop()




                # 加载音效
                boom_sound = pygame.mixer.Sound("./res/音效名")
                # 播放音效
                boom_sound.play()
                # 停止音效
                boom_sound.stop()
                三基色:Red Green Blue
                0 ~ 255


                  # 设置字体样式和大小
                  font = pygame.font.SysFont('SimHei', 字体大小)
                  # render(text(文本内容), antialias(抗锯齿), color(RGB)),返回文字对象
                  textobj = font.render(text, 1, (200, 200, 200))


                  # 设置文字矩形对象位置
                  textrect = textobj.get_rect()
                  textrect.move_ip(水平偏移量, 竖直偏移量)
                  # 在指定位置绘制指定文字对象
                  window.blit(textobj, textrect)
                  # 更新界面
                  pygame.display.update()


                  三、pygame的运行流程

                  使用pygame开发游戏,创建游戏窗口是基础,游戏的主循环(事件的获取、状态的检测、图像更新后的绘制)是核心。游戏事件可以理解为用户的所有输入,游戏获取后作出相应回应。游戏状态可以理解为游戏中某个对象在某一时刻的状态,如英雄的位置,动作等等。当所有对象按照时间进行更新后,绘制出当前时间帧的图像。物体或图形位置的变化只有通过在屏幕上绘图才可以看出来。

                  四.pygame源码

                  1、__init__.pyi

                    from typing import Any, Tuple, Callable, Union, Optional, overload, Type


                    # Most useful stuff
                    from pygame.constants import *
                    import pygame.surface
                    import pygame.rect
                    import pygame.color
                    import pygame.event
                    import pygame.bufferproxy
                    import pygame.draw
                    import pygame.display
                    import pygame.font
                    import pygame.image
                    import pygame.key
                    import pygame.mixer
                    import pygame.mouse
                    import pygame.time
                    import pygame.version


                    # Advanced stuff
                    import pygame.cursors
                    import pygame.joystick
                    import pygame.mask
                    import pygame.sprite
                    import pygame.transform
                    import pygame.bufferproxy
                    import pygame.pixelarray
                    import pygame.pixelcopy
                    import pygame.sndarray
                    import pygame.surfarray
                    import pygame.math
                    import pygame.fastevent


                    # Other
                    import pygame.scrap


                    # This classes are auto imported with pygame, so I put their declaration here
                    class Rect(pygame.rect.Rect): ...
                    class Surface(pygame.surface.Surface): ...
                    class Color(pygame.color.Color): ...
                    class PixelArray(pygame.pixelarray.PixelArray): ...
                    class Vector2(pygame.math.Vector2): ...
                    class Vector3(pygame.math.Vector3): ...


                    def init() -> Tuple[int, int]: ...
                    def quit() -> None: ...
                    def get_init() -> bool: ...


                    class error(RuntimeError):
                    RuntimeError
                    def get_error() -> str: ...
                    def set_error(error_msg: str) -> None: ...
                    def get_sdl_version() -> Tuple[int, int, int]: ...
                    def get_sdl_byteorder() -> int: ...
                    def encode_string(
                    obj: Union[str, bytes],
                    encoding: Optional[str] = "unicode_escape",
                    errors: Optional[str] = "backslashreplace",
                    etype: Optional[Type[Exception]] = UnicodeEncodeError,
                    ) -> bytes: ...
                    @overload
                    def encode_file_path(
                    obj: Union[str, bytes], etype: Optional[Type[Exception]] = UnicodeEncodeError
                    ) -> bytes: ...
                    @overload
                    def encode_file_path(
                    obj: Any, etype: Optional[Type[Exception]] = UnicodeEncodeError
                    ) -> bytes: ...
                    def register_quit(callable: Callable) -> None: ...
                    def __getattr__(name) -> Any: ... # don't error on missing stubs

                    2.typing.py

                      2.1typing模块的作用:
                      python3.5开始,PEP484python引入了类型注解(type hints)
                      类型检查,防止运行时出现参数和返回值类型不符合。
                      作为开发文档附加说明,方便使用者调用时传入和返回参数类型。
                      该模块加入后并不会影响程序的运行,不会报正式的错误;
                      只是提醒pycharm目前支持typing检查,参数类型错误会“黄色”提示
                        2.2、常用的类型有如下:
                        intlongfloat: 整型、长整形、浮点型;
                        bool、str: 布尔型、字符串类型;
                        List、 Tuple,、Dict、 Set:列表、元组、字典、集合;
                        Iterable、Iterator:可迭代类型、迭代器类型;
                        Generator:生成器类型;


                          2.3、typing源码
                          """
                          The typing module: Support for gradual typing as defined by PEP 484.
                          At large scale, the structure of the module is following:
                          * Imports and exports, all public names should be explicitly added to __all__.
                          * Internal helper functions: these should never be used in code outside this module.
                          * _SpecialForm and its instances (special forms): Any, NoReturn, ClassVar, Union, Optional
                          * Two classes whose instances can be type arguments in addition to types: ForwardRef and TypeVar
                          * The core of internal generics API: _GenericAlias and _VariadicGenericAlias, the latter is
                          currently only used by Tuple and Callable. All subscripted types like X[int], Union[int, str],
                          etc., are instances of either of these classes.
                          * The public counterpart of the generics API consists of two classes: Generic and Protocol.
                          * Public helper functions: get_type_hints, overload, cast, no_type_check,
                          no_type_check_decorator.
                          * Generic aliases for collections.abc ABCs and few additional protocols.
                          * Special types: NewType, NamedTuple, TypedDict.
                          * Wrapper submodules for re and io related types.
                          """
                          from abc import abstractmethod, ABCMeta
                          import collections
                          import collections.abc
                          import contextlib
                          import functools
                          import operator
                          import re as stdlib_re # Avoid confusion with the re we export.
                          import sys
                          import types
                          from types import WrapperDescriptorType, MethodWrapperType, MethodDescriptorType


                          # Please keep __all__ alphabetized within each category.
                          __all__ = [
                          # Super-special typing primitives.
                          'Any',
                          'Callable',
                          'ClassVar',
                          'Final',
                          'ForwardRef',
                          'Generic',
                          'Literal',
                          'Optional',
                          'Protocol',
                          'Tuple',
                          'Type',
                          'TypeVar',
                          'Union',


                          # ABCs (from collections.abc).
                          'AbstractSet', # collections.abc.Set.
                          'ByteString',
                          'Container',
                          'ContextManager',
                          'Hashable',
                          'ItemsView',
                          'Iterable',
                          'Iterator',
                          'KeysView',
                          'Mapping',
                          'MappingView',
                          'MutableMapping',
                          'MutableSequence',
                          'MutableSet',
                          'Sequence',
                          'Sized',
                          'ValuesView',
                          'Awaitable',
                          'AsyncIterator',
                          'AsyncIterable',
                          'Coroutine',
                          'Collection',
                          'AsyncGenerator',
                          'AsyncContextManager',


                          # Structural checks, a.k.a. protocols.
                          'Reversible',
                          'SupportsAbs',
                          'SupportsBytes',
                          'SupportsComplex',
                          'SupportsFloat',
                          'SupportsIndex',
                          'SupportsInt',
                          'SupportsRound',


                          # Concrete collection types.
                          'ChainMap',
                          'Counter',
                          'Deque',
                          'Dict',
                          'DefaultDict',
                          'List',
                          'OrderedDict',
                          'Set',
                          'FrozenSet',
                          'NamedTuple', # Not really a type.
                          'TypedDict', # Not really a type.
                          'Generator',


                          # One-off things.
                          'AnyStr',
                          'cast',
                          'final',
                          'get_args',
                          'get_origin',
                          'get_type_hints',
                          'NewType',
                          'no_type_check',
                          'no_type_check_decorator',
                          'NoReturn',
                          'overload',
                          'runtime_checkable',
                          'Text',
                          'TYPE_CHECKING',
                          ]


                          # The pseudo-submodules 're' and 'io' are part of the public
                          # namespace, but excluded from __all__ because they might stomp on
                          # legitimate imports of those modules.
                          def _type_check(arg, msg, is_argument=True):
                          """Check that the argument is a type, and return it (internal helper).
                          As a special case, accept None and return type(None) instead. Also wrap strings
                          into ForwardRef instances. Consider several corner cases, for example plain
                          special forms like Union are not valid, while Union[int, str] is OK, etc.
                          The msg argument is a human-readable error message, e.g::
                          "Union[arg, ...]: arg should be a type."
                          We append the repr() of the actual value (truncated to 100 chars).
                          """
                          invalid_generic_forms = (Generic, Protocol)
                          if is_argument:
                          invalid_generic_forms = invalid_generic_forms + (ClassVar, Final)


                          if arg is None:
                          return type(None)
                          if isinstance(arg, str):
                          return ForwardRef(arg)
                          if (isinstance(arg, _GenericAlias) and
                          arg.__origin__ in invalid_generic_forms):
                          raise TypeError(f"{arg} is not valid as type argument")
                          if (isinstance(arg, _SpecialForm) and arg not in (Any, NoReturn) or
                          arg in (Generic, Protocol)):
                          raise TypeError(f"Plain {arg} is not valid as type argument")
                          if isinstance(arg, (type, TypeVar, ForwardRef)):
                          return arg
                          if not callable(arg):
                          raise TypeError(f"{msg} Got {arg!r:.100}.")
                          return arg
                          def _type_repr(obj):
                          """Return the repr() of an object, special-casing types (internal helper).
                          If obj is a type, we return a shorter version than the default
                          type.__repr__, based on the module and qualified name, which is
                          typically enough to uniquely identify a type. For everything
                          else, we fall back on repr(obj).
                          """
                          if isinstance(obj, type):
                          if obj.__module__ == 'builtins':
                          return obj.__qualname__
                          return f'{obj.__module__}.{obj.__qualname__}'
                          if obj is ...:
                          return('...')
                          if isinstance(obj, types.FunctionType):
                          return obj.__name__
                          return repr(obj)




                          def _collect_type_vars(types):
                          """Collect all type variable contained in types in order of
                          first appearance (lexicographic order). For example::
                          _collect_type_vars((T, List[S, T])) == (T, S)
                          """
                          tvars = []
                          for t in types:
                          if isinstance(t, TypeVar) and t not in tvars:
                          tvars.append(t)
                          if isinstance(t, _GenericAlias) and not t._special:
                          tvars.extend([t for t in t.__parameters__ if t not in tvars])
                          return tuple(tvars)




                          def _subs_tvars(tp, tvars, subs):
                          """Substitute type variables 'tvars' with substitutions 'subs'.
                          These two must have the same length.
                          """
                          if not isinstance(tp, _GenericAlias):
                          return tp
                          new_args = list(tp.__args__)
                          for a, arg in enumerate(tp.__args__):
                          if isinstance(arg, TypeVar):
                          for i, tvar in enumerate(tvars):
                          if arg == tvar:
                          new_args[a] = subs[i]
                          else:
                          new_args[a] = _subs_tvars(arg, tvars, subs)
                          if tp.__origin__ is Union:
                          return Union[tuple(new_args)]
                          return tp.copy_with(tuple(new_args))




                          def _check_generic(cls, parameters):
                          """Check correct count for parameters of a generic cls (internal helper).
                          This gives a nice error message in case of count mismatch.
                          """
                          if not cls.__parameters__:
                          raise TypeError(f"{cls} is not a generic class")
                          alen = len(parameters)
                          elen = len(cls.__parameters__)
                          if alen != elen:
                          raise TypeError(f"Too {'many' if alen > elen else 'few'} parameters for {cls};"
                          f" actual {alen}, expected {elen}")




                          def _remove_dups_flatten(parameters):
                          """An internal helper for Union creation and substitution: flatten Unions
                          among parameters, then remove duplicates.
                          """
                          # Flatten out Union[Union[...], ...].
                          params = []
                          for p in parameters:
                          if isinstance(p, _GenericAlias) and p.__origin__ is Union:
                          params.extend(p.__args__)
                          elif isinstance(p, tuple) and len(p) > 0 and p[0] is Union:
                          params.extend(p[1:])
                          else:
                          params.append(p)
                          # Weed out strict duplicates, preserving the first of each occurrence.
                          all_params = set(params)
                          if len(all_params) < len(params):
                          new_params = []
                          for t in params:
                          if t in all_params:
                          new_params.append(t)
                          all_params.remove(t)
                          params = new_params
                          assert not all_params, all_params
                          return tuple(params)




                          _cleanups = []




                          def _tp_cache(func):
                          """Internal wrapper caching __getitem__ of generic types with a fallback to
                          original function for non-hashable arguments.
                          """
                          cached = functools.lru_cache()(func)
                          _cleanups.append(cached.cache_clear)


                          @functools.wraps(func)
                          def inner(*args, **kwds):
                          try:
                          return cached(*args, **kwds)
                          except TypeError:
                          pass # All real errors (not unhashable args) are raised below.
                          return func(*args, **kwds)
                          return inner




                          def _eval_type(t, globalns, localns):
                          """Evaluate all forward reverences in the given type t.
                          For use of globalns and localns see the docstring for get_type_hints().
                          """
                          if isinstance(t, ForwardRef):
                          return t._evaluate(globalns, localns)
                          if isinstance(t, _GenericAlias):
                          ev_args = tuple(_eval_type(a, globalns, localns) for a in t.__args__)
                          if ev_args == t.__args__:
                          return t
                          res = t.copy_with(ev_args)
                          res._special = t._special
                          return res
                          return t
                          class _Final:
                          """Mixin to prohibit subclassing"""
                          __slots__ = ('__weakref__',)


                          def __init_subclass__(self, , *args, **kwds):
                          if '_root' not in kwds:
                          raise TypeError("Cannot subclass special typing classes")


                          class _Immutable:
                          """Mixin to indicate that object should not be copied."""
                          def __copy__(self):
                          return self
                          def __deepcopy__(self, memo):
                          return self
                          class _SpecialForm(_Final, _Immutable, _root=True):
                          """Internal indicator of special typing constructs.
                          See _doc instance attribute for specific docs.
                          """
                          __slots__ = ('_name', '_doc')


                          def __new__(cls, *args, **kwds):
                          """Constructor.
                          This only exists to give a better error message in case
                          someone tries to subclass a special typing object (not a good idea).
                          """
                          if (len(args) == 3 and
                          isinstance(args[0], str) and
                          isinstance(args[1], tuple)):
                          # Close enough.
                          raise TypeError(f"Cannot subclass {cls!r}")
                          return super().__new__(cls)


                          def __init__(self, name, doc):
                          self._name = name
                          self._doc = doc
                          def __eq__(self, other):
                          if not isinstance(other, _SpecialForm):
                          return NotImplemented
                          return self._name == other._name


                          def __hash__(self):
                          return hash((self._name,))


                          def __repr__(self):
                          return 'typing.' + self._name


                          def __reduce__(self):
                          return self._name


                          def __call__(self, *args, **kwds):
                          raise TypeError(f"Cannot instantiate {self!r}")


                          def __instancecheck__(self, obj):
                          raise TypeError(f"{self} cannot be used with isinstance()")


                          def __subclasscheck__(self, cls):
                          raise TypeError(f"{self} cannot be used with issubclass()")


                          @_tp_cache
                          def __getitem__(self, parameters):
                          if self._name in ('ClassVar', 'Final'):
                          item = _type_check(parameters, f'{self._name} accepts only single type.')
                          return _GenericAlias(self, (item,))
                          if self._name == 'Union':
                          if parameters == ():
                          raise TypeError("Cannot take a Union of no types.")
                          if not isinstance(parameters, tuple):
                          parameters = (parameters,)
                          msg = "Union[arg, ...]: each arg must be a type."
                          parameters = tuple(_type_check(p, msg) for p in parameters)
                          parameters = _remove_dups_flatten(parameters)
                          if len(parameters) == 1:
                          return parameters[0]
                          return _GenericAlias(self, parameters)
                          if self._name == 'Optional':
                          arg = _type_check(parameters, "Optional[t] requires a single type.")
                          return Union[arg, type(None)]
                          if self._name == 'Literal':
                          # There is no '_type_check' call because arguments to Literal[...] are
                          # values, not types.
                          return _GenericAlias(self, parameters)
                          raise TypeError(f"{self} is not subscriptable")




                          Any = _SpecialForm('Any', doc=
                          """Special type indicating an unconstrained type.
                          - Any is compatible with every type.
                          - Any assumed to have all methods.
                          - All values assumed to be instances of Any.
                          Note that all the above statements are true from the point of view of
                          static type checkers. At runtime, Any should not be used with instance
                          or class checks.
                          """)


                          NoReturn = _SpecialForm('NoReturn', doc=
                          """Special type indicating functions that never return.
                          Example::
                          from typing import NoReturn
                          def stop() -> NoReturn:
                          raise Exception('no way')
                          This type is invalid in other positions, e.g., ``List[NoReturn]``
                          will fail in static type checkers.
                          """)


                          ClassVar = _SpecialForm('ClassVar', doc=
                          """Special type construct to mark class variables.
                          An annotation wrapped in ClassVar indicates that a given
                          attribute is intended to be used as a class variable and
                          should not be set on instances of that class. Usage::
                          class Starship:
                          stats: ClassVar[Dict[str, int]] = {} # class variable
                          damage: int = 10 # instance variable
                          ClassVar accepts only types and cannot be further subscribed.
                          Note that ClassVar is not a class itself, and should not
                          be used with isinstance() or issubclass().
                          """)


                          Final = _SpecialForm('Final', doc=
                          """Special typing construct to indicate final names to type checkers.
                          A final name cannot be re-assigned or overridden in a subclass.
                          For example:
                          MAX_SIZE: Final = 9000
                          MAX_SIZE += 1 # Error reported by type checker
                          class Connection:
                          TIMEOUT: Final[int] = 10
                          class FastConnector(Connection):
                          TIMEOUT = 1 # Error reported by type checker
                          There is no runtime checking of these properties.
                          """)


                          Union = _SpecialForm('Union', doc=
                          """Union type; Union[X, Y] means either X or Y.
                          To define a union, use e.g. Union[int, str]. Details:
                          - The arguments must be types and there must be at least one.
                          - None as an argument is a special case and is replaced by
                          type(None).
                          - Unions of unions are flattened, e.g.::
                          Union[Union[int, str], float] == Union[int, str, float]
                          - Unions of a single argument vanish, e.g.::
                          Union[int] == int # The constructor actually returns int
                          - Redundant arguments are skipped, e.g.::
                          Union[int, str, int] == Union[int, str]
                          - When comparing unions, the argument order is ignored, e.g.::
                          Union[int, str] == Union[str, int]
                          - You cannot subclass or instantiate a union.
                          - You can use Optional[X] as a shorthand for Union[X, None].
                          """)


                          Optional = _SpecialForm('Optional', doc=
                          """Optional type.
                          Optional[X] is equivalent to Union[X, None].
                          """)


                          Literal = _SpecialForm('Literal', doc=
                          """Special typing form to define literal types (a.k.a. value types).
                          This form can be used to indicate to type checkers that the corresponding
                          variable or function parameter has a value equivalent to the provided
                          literal (or one of several literals):
                          def validate_simple(data: Any) -> Literal[True]: # always returns True
                          ...
                          MODE = Literal['r', 'rb', 'w', 'wb']
                          def open_helper(file: str, mode: MODE) -> str:
                          ...
                          open_helper('/some/path', 'r') # Passes type check
                          open_helper('/other/path', 'typo') # Error in type checker
                          Literal[...] cannot be subclassed. At runtime, an arbitrary value
                          is allowed as type argument to Literal[...], but type checkers may
                          impose restrictions.
                          """)




                          class ForwardRef(_Final, _root=True):
                          """Internal wrapper to hold a forward reference."""
                          __slots__ = ('__forward_arg__', '__forward_code__',
                          '__forward_evaluated__', '__forward_value__',
                          '__forward_is_argument__')


                          def __init__(self, arg, is_argument=True):
                          if not isinstance(arg, str):
                          raise TypeError(f"Forward reference must be a string -- got {arg!r}")
                          try:
                          code = compile(arg, '<string>', 'eval')
                          except SyntaxError:
                          raise SyntaxError(f"Forward reference must be an expression -- got {arg!r}")
                          self.__forward_arg__ = arg
                          self.__forward_code__ = code
                          self.__forward_evaluated__ = False
                          self.__forward_value__ = None
                          self.__forward_is_argument__ = is_argument
                          def _evaluate(self, globalns, localns):
                          if not self.__forward_evaluated__ or localns is not globalns:
                          if globalns is None and localns is None:
                          globalns = localns = {}
                          elif globalns is None:
                          globalns = localns
                          elif localns is None:
                          localns = globalns
                          self.__forward_value__ = _type_check(
                          eval(self.__forward_code__, globalns, localns),
                          "Forward references must evaluate to types.",
                          is_argument=self.__forward_is_argument__)
                          self.__forward_evaluated__ = True
                          return self.__forward_value__


                          def __eq__(self, other):
                          if not isinstance(other, ForwardRef):
                          return NotImplemented
                          if self.__forward_evaluated__ and other.__forward_evaluated__:
                          return (self.__forward_arg__ == other.__forward_arg__ and
                          self.__forward_value__ == other.__forward_value__)
                          return self.__forward_arg__ == other.__forward_arg__


                          def __hash__(self):
                          return hash(self.__forward_arg__)


                          def __repr__(self):
                          return f'ForwardRef({self.__forward_arg__!r})'
                          class TypeVar(_Final, _Immutable, _root=True):
                          """Type variable.
                          Usage::
                          T = TypeVar('T') # Can be anything
                          A = TypeVar('A', str, bytes) # Must be str or bytes
                          Type variables exist primarily for the benefit of static type
                          checkers. They serve as the parameters for generic types as well
                          as for generic function definitions. See class Generic for more
                          information on generic types. Generic functions work as follows:
                          def repeat(x: T, n: int) -> List[T]:
                          '''Return a list containing n references to x.'''
                          return [x]*n
                          def longest(x: A, y: A) -> A:
                          '''Return the longest of two strings.'''
                          return x if len(x) >= len(y) else y
                          The latter example's signature is essentially the overloading
                          of (str, str) -> str and (bytes, bytes) -> bytes. Also note
                          that if the arguments are instances of some subclass of str,
                          the return type is still plain str.
                          At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError.
                          Type variables defined with covariant=True or contravariant=True
                          can be used to declare covariant or contravariant generic types.
                          See PEP 484 for more details. By default generic types are invariant
                          in all type variables.
                          Type variables can be introspected. e.g.:
                          T.__name__ == 'T'
                          T.__constraints__ == ()
                          T.__covariant__ == False
                          T.__contravariant__ = False
                          A.__constraints__ == (str, bytes)
                          Note that only type variables defined in global scope can be pickled.
                          """
                          __slots__ = ('__name__', '__bound__', '__constraints__',
                          '__covariant__', '__contravariant__')


                          def __init__(self, name, *constraints, bound=None,
                          covariant=False, contravariant=False):
                          self.__name__ = name
                          if covariant and contravariant:
                          raise ValueError("Bivariant types are not supported.")
                          self.__covariant__ = bool(covariant)
                          self.__contravariant__ = bool(contravariant)
                          if constraints and bound is not None:
                          raise TypeError("Constraints cannot be combined with bound=...")
                          if constraints and len(constraints) == 1:
                          raise TypeError("A single constraint is not allowed")
                          msg = "TypeVar(name, constraint, ...): constraints must be types."
                          self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
                          if bound:
                          self.__bound__ = _type_check(bound, "Bound must be a type.")
                          else:
                          self.__bound__ = None
                          try:
                          def_mod = sys._getframe(1).f_globals.get('__name__', '__main__') # for pickling
                          except (AttributeError, ValueError):
                          def_mod = None
                          if def_mod != 'typing':
                          self.__module__ = def_mod


                          def __repr__(self):
                          if self.__covariant__:
                          prefix = '+'
                          elif self.__contravariant__:
                          prefix = '-'
                          else:
                          prefix = '~'
                          return prefix + self.__name__
                          def __reduce__(self):
                          return self.__name__
                          # Special typing constructs Union, Optional, Generic, Callable and Tuple
                          # use three special attributes for internal bookkeeping of generic types:
                          # * __parameters__ is a tuple of unique free type parameters of a generic
                          # type, for example, Dict[T, T].__parameters__ == (T,);
                          # * __origin__ keeps a reference to a type that was subscripted,
                          # e.g., Union[T, int].__origin__ == Union, or the non-generic version of
                          # the type.
                          # * __args__ is a tuple of all arguments used in subscripting,
                          # e.g., Dict[T, int].__args__ == (T, int).
                          # Mapping from non-generic type names that have a generic alias in typing
                          # but with a different name.
                          _normalize_alias = {'list': 'List',
                          'tuple': 'Tuple',
                          'dict': 'Dict',
                          'set': 'Set',
                          'frozenset': 'FrozenSet',
                          'deque': 'Deque',
                          'defaultdict': 'DefaultDict',
                          'type': 'Type',
                          'Set': 'AbstractSet'}


                          def _is_dunder(attr):
                          return attr.startswith('__') and attr.endswith('__')




                          class _GenericAlias(_Final, _root=True):
                          """The central part of internal API.
                          This represents a generic version of type 'origin' with type arguments 'params'.
                          There are two kind of these aliases: user defined and special. The special ones
                          are wrappers around builtin collections and ABCs in collections.abc. These must
                          have 'name' always set. If 'inst' is False, then the alias can't be instantiated,
                          this is used by e.g. typing.List and typing.Dict.
                          """
                          def __init__(self, origin, params, *, inst=True, special=False, name=None):
                          self._inst = inst
                          self._special = special
                          if special and name is None:
                          orig_name = origin.__name__
                          name = _normalize_alias.get(orig_name, orig_name)
                          self._name = name
                          if not isinstance(params, tuple):
                          params = (params,)
                          self.__origin__ = origin
                          self.__args__ = tuple(... if a is _TypingEllipsis else
                          () if a is _TypingEmpty else
                          a for a in params)
                          self.__parameters__ = _collect_type_vars(params)
                          self.__slots__ = None # This is not documented.
                          if not name:
                          self.__module__ = origin.__module__
                          @_tp_cache
                          def __getitem__(self, params):
                          if self.__origin__ in (Generic, Protocol):
                          # Can't subscript Generic[...] or Protocol[...].
                          raise TypeError(f"Cannot subscript already-subscripted {self}")
                          if not isinstance(params, tuple):
                          params = (params,)
                          msg = "Parameters to generic types must be types."
                          params = tuple(_type_check(p, msg) for p in params)
                          _check_generic(self, params)
                          return _subs_tvars(self, self.__parameters__, params)


                          def copy_with(self, params):
                          # We don't copy self._special.
                          return _GenericAlias(self.__origin__, params, name=self._name, inst=self._inst)


                          def __repr__(self):
                          if (self._name != 'Callable' or
                          len(self.__args__) == 2 and self.__args__[0] is Ellipsis):
                          if self._name:
                          name = 'typing.' + self._name
                          else:
                          name = _type_repr(self.__origin__)
                          if not self._special:
                          args = f'[{", ".join([_type_repr(a) for a in self.__args__])}]'
                          else:
                          args = ''
                          return (f'{name}{args}')
                          if self._special:
                          return 'typing.Callable'
                          return (f'typing.Callable'
                          f'[[{", ".join([_type_repr(a) for a in self.__args__[:-1]])}], '
                          f'{_type_repr(self.__args__[-1])}]')


                          def __eq__(self, other):
                          if not isinstance(other, _GenericAlias):
                          return NotImplemented
                          if self.__origin__ != other.__origin__:
                          return False
                          if self.__origin__ is Union and other.__origin__ is Union:
                          return frozenset(self.__args__) == frozenset(other.__args__)
                          return self.__args__ == other.__args__


                          def __hash__(self):
                          if self.__origin__ is Union:
                          return hash((Union, frozenset(self.__args__)))
                          return hash((self.__origin__, self.__args__))


                          def __call__(self, *args, **kwargs):
                          if not self._inst:
                          raise TypeError(f"Type {self._name} cannot be instantiated; "
                          f"use {self._name.lower()}() instead")
                          result = self.__origin__(*args, **kwargs)
                          try:
                          result.__orig_class__ = self
                          except AttributeError:
                          pass
                          return result


                          def __mro_entries__(self, bases):
                          if self._name: # generic version of an ABC or built-in class
                          res = []
                          if self.__origin__ not in bases:
                          res.append(self.__origin__)
                          i = bases.index(self)
                          if not any(isinstance(b, _GenericAlias) or issubclass(b, Generic)
                          for b in bases[i+1:]):
                          res.append(Generic)
                          return tuple(res)
                          if self.__origin__ is Generic:
                          if Protocol in bases:
                          return ()
                          i = bases.index(self)
                          for b in bases[i+1:]:
                          if isinstance(b, _GenericAlias) and b is not self:
                          return ()
                          return (self.__origin__,)


                          def __getattr__(self, attr):
                          # We are careful for copy and pickle.
                          # Also for simplicity we just don't relay all dunder names
                          if '__origin__' in self.__dict__ and not _is_dunder(attr):
                          return getattr(self.__origin__, attr)
                          raise AttributeError(attr)


                          def __setattr__(self, attr, val):
                          if _is_dunder(attr) or attr in ('_name', '_inst', '_special'):
                          super().__setattr__(attr, val)
                          else:
                          setattr(self.__origin__, attr, val)


                          def __instancecheck__(self, obj):
                          return self.__subclasscheck__(type(obj))


                          def __subclasscheck__(self, cls):
                          if self._special:
                          if not isinstance(cls, _GenericAlias):
                          return issubclass(cls, self.__origin__)
                          if cls._special:
                          return issubclass(cls.__origin__, self.__origin__)
                          raise TypeError("Subscripted generics cannot be used with"
                          " class and instance checks")


                          def __reduce__(self):
                          if self._special:
                          return self._name


                          if self._name:
                          origin = globals()[self._name]
                          else:
                          origin = self.__origin__
                          if (origin is Callable and
                          not (len(self.__args__) == 2 and self.__args__[0] is Ellipsis)):
                          args = list(self.__args__[:-1]), self.__args__[-1]
                          else:
                          args = tuple(self.__args__)
                          if len(args) == 1 and not isinstance(args[0], tuple):
                          args, = args
                          return operator.getitem, (origin, args)




                          class _VariadicGenericAlias(_GenericAlias, _root=True):
                          """Same as _GenericAlias above but for variadic aliases. Currently,
                          this is used only by special internal aliases: Tuple and Callable.
                          """
                          def __getitem__(self, params):
                          if self._name != 'Callable' or not self._special:
                          return self.__getitem_inner__(params)
                          if not isinstance(params, tuple) or len(params) != 2:
                          raise TypeError("Callable must be used as "
                          "Callable[[arg, ...], result].")
                          args, result = params
                          if args is Ellipsis:
                          params = (Ellipsis, result)
                          else:
                          if not isinstance(args, list):
                          raise TypeError(f"Callable[args, result]: args must be a list."
                          f" Got {args}")
                          params = (tuple(args), result)
                          return self.__getitem_inner__(params)


                          @_tp_cache
                          def __getitem_inner__(self, params):
                          if self.__origin__ is tuple and self._special:
                          if params == ():
                          return self.copy_with((_TypingEmpty,))
                          if not isinstance(params, tuple):
                          params = (params,)
                          if len(params) == 2 and params[1] is ...:
                          msg = "Tuple[t, ...]: t must be a type."
                          p = _type_check(params[0], msg)
                          return self.copy_with((p, _TypingEllipsis))
                          msg = "Tuple[t0, t1, ...]: each t must be a type."
                          params = tuple(_type_check(p, msg) for p in params)
                          return self.copy_with(params)
                          if self.__origin__ is collections.abc.Callable and self._special:
                          args, result = params
                          msg = "Callable[args, result]: result must be a type."
                          result = _type_check(result, msg)
                          if args is Ellipsis:
                          return self.copy_with((_TypingEllipsis, result))
                          msg = "Callable[[arg, ...], result]: each arg must be a type."
                          args = tuple(_type_check(arg, msg) for arg in args)
                          params = args + (result,)
                          return self.copy_with(params)
                          return super().__getitem__(params)




                          class Generic:
                          """Abstract base class for generic types.
                          A generic type is typically declared by inheriting from
                          this class parameterized with one or more type variables.
                          For example, a generic mapping type might be defined as::
                          class Mapping(Generic[KT, VT]):
                          def __getitem__(self, key: KT) -> VT:
                          ...
                          # Etc.
                          This class can then be used as follows::
                          def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT:
                          try:
                          return mapping[key]
                          except KeyError:
                          return default
                          """
                          __slots__ = ()
                          _is_protocol = False
                          def __new__(cls, *args, **kwds):
                          if cls in (Generic, Protocol):
                          raise TypeError(f"Type {cls.__name__} cannot be instantiated; "
                          "it can be used only as a base class")
                          if super().__new__ is object.__new__ and cls.__init__ is not object.__init__:
                          obj = super().__new__(cls)
                          else:
                          obj = super().__new__(cls, *args, **kwds)
                          return obj


                          @_tp_cache
                          def __class_getitem__(cls, params):
                          if not isinstance(params, tuple):
                          params = (params,)
                          if not params and cls is not Tuple:
                          raise TypeError(
                          f"Parameter list to {cls.__qualname__}[...] cannot be empty")
                          msg = "Parameters to generic types must be types."
                          params = tuple(_type_check(p, msg) for p in params)
                          if cls in (Generic, Protocol):
                          # Generic and Protocol can only be subscripted with unique type variables.
                          if not all(isinstance(p, TypeVar) for p in params):
                          raise TypeError(
                          f"Parameters to {cls.__name__}[...] must all be type variables")
                          if len(set(params)) != len(params):
                          raise TypeError(
                          f"Parameters to {cls.__name__}[...] must all be unique")
                          else:
                          # Subscripting a regular Generic subclass.
                          _check_generic(cls, params)
                          return _GenericAlias(cls, params)


                          def __init_subclass__(cls, *args, **kwargs):
                          super().__init_subclass__(*args, **kwargs)
                          tvars = []
                          if '__orig_bases__' in cls.__dict__:
                          error = Generic in cls.__orig_bases__
                          else:
                          error = Generic in cls.__bases__ and cls.__name__ != 'Protocol'
                          if error:
                          raise TypeError("Cannot inherit from plain Generic")
                          if '__orig_bases__' in cls.__dict__:
                          tvars = _collect_type_vars(cls.__orig_bases__)
                          # Look for Generic[T1, ..., Tn].
                          # If found, tvars must be a subset of it.
                          # If not found, tvars is it.
                          # Also check for and reject plain Generic,
                          # and reject multiple Generic[...].
                          gvars = None
                          for base in cls.__orig_bases__:
                          if (isinstance(base, _GenericAlias) and
                          base.__origin__ is Generic):
                          if gvars is not None:
                          raise TypeError(
                          "Cannot inherit from Generic[...] multiple types.")
                          gvars = base.__parameters__
                          if gvars is not None:
                          tvarset = set(tvars)
                          gvarset = set(gvars)
                          if not tvarset <= gvarset:
                          s_vars = ', '.join(str(t) for t in tvars if t not in gvarset)
                          s_args = ', '.join(str(g) for g in gvars)
                          raise TypeError(f"Some type variables ({s_vars}) are"
                          f" not listed in Generic[{s_args}]")
                          tvars = gvars
                          cls.__parameters__ = tuple(tvars)




                          class _TypingEmpty:
                          """Internal placeholder for () or []. Used by TupleMeta and CallableMeta
                          to allow empty list/tuple in specific places, without allowing them
                          to sneak in where prohibited.
                          """
                          class _TypingEllipsis:
                          """Internal placeholder for ... (ellipsis)."""
                          _TYPING_INTERNALS = ['__parameters__', '__orig_bases__', '__orig_class__',
                          '_is_protocol', '_is_runtime_protocol']


                          _SPECIAL_NAMES = ['__abstractmethods__', '__annotations__', '__dict__', '__doc__',
                          '__init__', '__module__', '__new__', '__slots__',
                          '__subclasshook__', '__weakref__']


                          # These special attributes will be not collected as protocol members.
                          EXCLUDED_ATTRIBUTES = _TYPING_INTERNALS + _SPECIAL_NAMES + ['_MutableMapping__marker']




                          def _get_protocol_attrs(cls):
                          """Collect protocol members from a protocol class objects.
                          This includes names actually defined in the class dictionary, as well
                          as names that appear in annotations. Special names (above) are skipped.
                          """
                          attrs = set()
                          for base in cls.__mro__[:-1]: # without object
                          if base.__name__ in ('Protocol', 'Generic'):
                          continue
                          annotations = getattr(base, '__annotations__', {})
                          for attr in list(base.__dict__.keys()) + list(annotations.keys()):
                          if not attr.startswith('_abc_') and attr not in EXCLUDED_ATTRIBUTES:
                          attrs.add(attr)
                          return attrs




                          def _is_callable_members_only(cls):
                          # PEP 544 prohibits using issubclass() with protocols that have non-method members.
                          return all(callable(getattr(cls, attr, None)) for attr in _get_protocol_attrs(cls))




                          def _no_init(self, *args, **kwargs):
                          if type(self)._is_protocol:
                          raise TypeError('Protocols cannot be instantiated')




                          def _allow_reckless_class_cheks():
                          """Allow instnance and class checks for special stdlib modules.
                          The abc and functools modules indiscriminately call isinstance() and
                          issubclass() on the whole MRO of a user class, which may contain protocols.
                          """
                          try:
                          return sys._getframe(3).f_globals['__name__'] in ['abc', 'functools']
                          except (AttributeError, ValueError): # For platforms without _getframe().
                          return True
                          _PROTO_WHITELIST = {
                          'collections.abc': [
                          'Callable', 'Awaitable', 'Iterable', 'Iterator', 'AsyncIterable',
                          'Hashable', 'Sized', 'Container', 'Collection', 'Reversible',
                          ],
                          'contextlib': ['AbstractContextManager', 'AbstractAsyncContextManager'],
                          }




                          class _ProtocolMeta(ABCMeta):
                          # This metaclass is really unfortunate and exists only because of
                          # the lack of __instancehook__.
                          def __instancecheck__(cls, instance):
                          # We need this method for situations where attributes are
                          # assigned in __init__.
                          if ((not getattr(cls, '_is_protocol', False) or
                          _is_callable_members_only(cls)) and
                          issubclass(instance.__class__, cls)):
                          return True
                          if cls._is_protocol:
                          if all(hasattr(instance, attr) and
                          # All *methods* can be blocked by setting them to None.
                          (not callable(getattr(cls, attr, None)) or
                          getattr(instance, attr) is not None)
                          for attr in _get_protocol_attrs(cls)):
                          return True
                          return super().__instancecheck__(instance)




                          class Protocol(Generic, metaclass=_ProtocolMeta):
                          """Base class for protocol classes.
                          Protocol classes are defined as::
                          class Proto(Protocol):
                          def meth(self) -> int:
                          ...
                          Such classes are primarily used with static type checkers that recognize
                          structural subtyping (static duck-typing), for example::
                          class C:
                          def meth(self) -> int:
                          return 0
                          def func(x: Proto) -> int:
                          return x.meth()
                          func(C()) # Passes static type check
                          See PEP 544 for details. Protocol classes decorated with
                          @typing.runtime_checkable act as simple-minded runtime protocols that check
                          only the presence of given attributes, ignoring their type signatures.
                          Protocol classes can be generic, they are defined as::
                          class GenProto(Protocol[T]):
                          def meth(self) -> T:
                          ...
                          """
                          __slots__ = ()
                          _is_protocol = True
                          _is_runtime_protocol = False
                          def __init_subclass__(cls, *args, **kwargs):
                          super().__init_subclass__(*args, **kwargs)


                          # Determine if this is a protocol or a concrete subclass.
                          if not cls.__dict__.get('_is_protocol', False):
                          cls._is_protocol = any(b is Protocol for b in cls.__bases__)


                          # Set (or override) the protocol subclass hook.
                          def _proto_hook(other):
                          if not cls.__dict__.get('_is_protocol', False):
                          return NotImplemented
                          # First, perform various sanity checks.
                          if not getattr(cls, '_is_runtime_protocol', False):
                          if _allow_reckless_class_cheks():
                          return NotImplemented
                          raise TypeError("Instance and class checks can only be used with"
                          " @runtime_checkable protocols")
                          if not _is_callable_members_only(cls):
                          if _allow_reckless_class_cheks():
                          return NotImplemented
                          raise TypeError("Protocols with non-method members"
                          " don't support issubclass()")
                          if not isinstance(other, type):
                          # Same error message as for issubclass(1, int).
                          raise TypeError('issubclass() arg 1 must be a class')


                          # Second, perform the actual structural compatibility check.
                          for attr in _get_protocol_attrs(cls):
                          for base in other.__mro__:
                          # Check if the members appears in the class dictionary...
                          if attr in base.__dict__:
                          if base.__dict__[attr] is None:
                          return NotImplemented
                          break
                          # ...or in annotations, if it is a sub-protocol.
                          annotations = getattr(base, '__annotations__', {})
                          if (isinstance(annotations, collections.abc.Mapping) and
                          attr in annotations and
                          issubclass(other, Generic) and other._is_protocol):
                          break
                          else:
                          return NotImplemented
                          return True
                          if '__subclasshook__' not in cls.__dict__:
                          cls.__subclasshook__ = _proto_hook


                          # We have nothing more to do for non-protocols...
                          if not cls._is_protocol:
                          return
                          # ... otherwise check consistency of bases, and prohibit instantiation.
                          for base in cls.__bases__:
                          if not (base in (object, Generic) or
                          base.__module__ in _PROTO_WHITELIST and
                          base.__name__ in _PROTO_WHITELIST[base.__module__] or
                          issubclass(base, Generic) and base._is_protocol):
                          raise TypeError('Protocols can only inherit from other'
                          ' protocols, got %r' % base)
                          cls.__init__ = _no_init




                          def runtime_checkable(cls):
                          """Mark a protocol class as a runtime protocol.
                          Such protocol can be used with isinstance() and issubclass().
                          Raise TypeError if applied to a non-protocol class.
                          This allows a simple-minded structural check very similar to
                          one trick ponies in collections.abc such as Iterable.
                          For example::
                          @runtime_checkable
                          class Closable(Protocol):
                          def close(self): ...
                          assert isinstance(open('/some/file'), Closable)
                          Warning: this will check only the presence of the required methods,
                          not their type signatures!
                          """
                          if not issubclass(cls, Generic) or not cls._is_protocol:
                          raise TypeError('@runtime_checkable can be only applied to protocol classes,'
                          ' got %r' % cls)
                          cls._is_runtime_protocol = True
                          return cls
                          def cast(typ, val):
                          """Cast a value to a type.
                          This returns the value unchanged. To the type checker this
                          signals that the return value has the designated type, but at
                          runtime we intentionally don't check anything (we want this
                          to be as fast as possible).
                          """
                          return val
                          def _get_defaults(func):
                          """Internal helper to extract the default arguments, by name."""
                          try:
                          code = func.__code__
                          except AttributeError:
                          # Some built-in functions don't have __code__, __defaults__, etc.
                          return {}
                          pos_count = code.co_argcount
                          arg_names = code.co_varnames
                          arg_names = arg_names[:pos_count]
                          defaults = func.__defaults__ or ()
                          kwdefaults = func.__kwdefaults__
                          res = dict(kwdefaults) if kwdefaults else {}
                          pos_offset = pos_count - len(defaults)
                          for name, value in zip(arg_names[pos_offset:], defaults):
                          assert name not in res
                          res[name] = value
                          return res




                          _allowed_types = (types.FunctionType, types.BuiltinFunctionType,
                          types.MethodType, types.ModuleType,
                          WrapperDescriptorType, MethodWrapperType, MethodDescriptorType)




                          def get_type_hints(obj, globalns=None, localns=None):
                          """Return type hints for an object.
                          This is often the same as obj.__annotations__, but it handles
                          forward references encoded as string literals, and if necessary
                          adds Optional[t] if a default value equal to None is set.
                          The argument may be a module, class, method, or function. The annotations
                          are returned as a dictionary. For classes, annotations include also
                          inherited members.
                          TypeError is raised if the argument is not of a type that can contain
                          annotations, and an empty dictionary is returned if no annotations are
                          present.
                          BEWARE -- the behavior of globalns and localns is counterintuitive
                          (unless you are familiar with how eval() and exec() work). The
                          search order is locals first, then globals.
                          - If no dict arguments are passed, an attempt is made to use the
                          globals from obj (or the respective module's globals for classes),
                          and these are also used as the locals. If the object does not appear
                          to have globals, an empty dictionary is used.
                          - If one dict argument is passed, it is used for both globals and
                          locals.
                          - If two dict arguments are passed, they specify globals and
                          locals, respectively.
                          """
                          if getattr(obj, '__no_type_check__', None):
                          return {}
                          # Classes require a special treatment.
                          if isinstance(obj, type):
                          hints = {}
                          for base in reversed(obj.__mro__):
                          if globalns is None:
                          base_globals = sys.modules[base.__module__].__dict__
                          else:
                          base_globals = globalns
                          ann = base.__dict__.get('__annotations__', {})
                          for name, value in ann.items():
                          if value is None:
                          value = type(None)
                          if isinstance(value, str):
                          value = ForwardRef(value, is_argument=False)
                          value = _eval_type(value, base_globals, localns)
                          hints[name] = value
                          return hints


                          if globalns is None:
                          if isinstance(obj, types.ModuleType):
                          globalns = obj.__dict__
                          else:
                          nsobj = obj
                          # Find globalns for the unwrapped object.
                          while hasattr(nsobj, '__wrapped__'):
                          nsobj = nsobj.__wrapped__
                          globalns = getattr(nsobj, '__globals__', {})
                          if localns is None:
                          localns = globalns
                          elif localns is None:
                          localns = globalns
                          hints = getattr(obj, '__annotations__', None)
                          if hints is None:
                          # Return empty annotations for something that _could_ have them.
                          if isinstance(obj, _allowed_types):
                          return {}
                          else:
                          raise TypeError('{!r} is not a module, class, method, '
                          'or function.'.format(obj))
                          defaults = _get_defaults(obj)
                          hints = dict(hints)
                          for name, value in hints.items():
                          if value is None:
                          value = type(None)
                          if isinstance(value, str):
                          value = ForwardRef(value)
                          value = _eval_type(value, globalns, localns)
                          if name in defaults and defaults[name] is None:
                          value = Optional[value]
                          hints[name] = value
                          return hints




                          def get_origin(tp):
                          """Get the unsubscripted version of a type.
                          This supports generic types, Callable, Tuple, Union, Literal, Final and ClassVar.
                          Return None for unsupported types. Examples::
                          get_origin(Literal[42]) is Literal
                          get_origin(int) is None
                          get_origin(ClassVar[int]) is ClassVar
                          get_origin(Generic) is Generic
                          get_origin(Generic[T]) is Generic
                          get_origin(Union[T, int]) is Union
                          get_origin(List[Tuple[T, T]][int]) == list
                          """
                          if isinstance(tp, _GenericAlias):
                          return tp.__origin__
                          if tp is Generic:
                          return Generic
                          return None
                          def get_args(tp):
                          """Get type arguments with all substitutions performed.
                          For unions, basic simplifications used by Union constructor are performed.
                          Examples::
                          get_args(Dict[str, int]) == (str, int)
                          get_args(int) == ()
                          get_args(Union[int, Union[T, int], str][int]) == (int, str)
                          get_args(Union[int, Tuple[T, int]][str]) == (int, Tuple[str, int])
                          get_args(Callable[[], T][int]) == ([], int)
                          """
                          if isinstance(tp, _GenericAlias) and not tp._special:
                          res = tp.__args__
                          if get_origin(tp) is collections.abc.Callable and res[0] is not Ellipsis:
                          res = (list(res[:-1]), res[-1])
                          return res
                          return ()




                          def no_type_check(arg):
                          """Decorator to indicate that annotations are not type hints.
                          The argument must be a class or function; if it is a class, it
                          applies recursively to all methods and classes defined in that class
                          (but not to methods defined in its superclasses or subclasses).
                          This mutates the function(s) or class(es) in place.
                          """
                          if isinstance(arg, type):
                          arg_attrs = arg.__dict__.copy()
                          for attr, val in arg.__dict__.items():
                          if val in arg.__bases__ + (arg,):
                          arg_attrs.pop(attr)
                          for obj in arg_attrs.values():
                          if isinstance(obj, types.FunctionType):
                          obj.__no_type_check__ = True
                          if isinstance(obj, type):
                          no_type_check(obj)
                          try:
                          arg.__no_type_check__ = True
                          except TypeError: # built-in classes
                          pass
                          return arg
                          def no_type_check_decorator(decorator):
                          """Decorator to give another decorator the @no_type_check effect.
                          This wraps the decorator with something that wraps the decorated
                          function in @no_type_check.
                          """
                          @functools.wraps(decorator)
                          def wrapped_decorator(*args, **kwds):
                          func = decorator(*args, **kwds)
                          func = no_type_check(func)
                          return func


                          return wrapped_decorator




                          def _overload_dummy(*args, **kwds):
                          """Helper for @overload to raise when called."""
                          raise NotImplementedError(
                          "You should not call an overloaded function. "
                          "A series of @overload-decorated functions "
                          "outside a stub module should always be followed "
                          "by an implementation that is not @overload-ed.")




                          def overload(func):
                          """Decorator for overloaded functions/methods.
                          In a stub file, place two or more stub definitions for the same
                          function in a row, each decorated with @overload. For example:
                          @overload
                          def utf8(value: None) -> None: ...
                          @overload
                          def utf8(value: bytes) -> bytes: ...
                          @overload
                          def utf8(value: str) -> bytes: ...
                          In a non-stub file (i.e. a regular .py file), do the same but
                          follow it with an implementation. The implementation should *not*
                          be decorated with @overload. For example:
                          @overload
                          def utf8(value: None) -> None: ...
                          @overload
                          def utf8(value: bytes) -> bytes: ...
                          @overload
                          def utf8(value: str) -> bytes: ...
                          def utf8(value):
                          # implementation goes here
                          """
                          return _overload_dummy




                          def final(f):
                          """A decorator to indicate final methods and final classes.
                          Use this decorator to indicate to type checkers that the decorated
                          method cannot be overridden, and decorated class cannot be subclassed.
                          For example:
                          class Base:
                          @final
                          def done(self) -> None:
                          ...
                          class Sub(Base):
                          def done(self) -> None: # Error reported by type checker
                          ...
                          @final
                          class Leaf:
                          ...
                          class Other(Leaf): # Error reported by type checker
                          ...
                          There is no runtime checking of these properties.
                          """
                          return f
                          # Some unconstrained type variables. These are used by the container types.
                          # (These are not for export.)
                          T = TypeVar('T') # Any type.
                          KT = TypeVar('KT') # Key type.
                          VT = TypeVar('VT') # Value type.
                          T_co = TypeVar('T_co', covariant=True) # Any type covariant containers.
                          V_co = TypeVar('V_co', covariant=True) # Any type covariant containers.
                          VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers.
                          T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant.
                          # Internal type variable used for Type[].
                          CT_co = TypeVar('CT_co', covariant=True, bound=type)


                          # A useful type variable with constraints. This represents string types.
                          # (This one *is* for export!)
                          AnyStr = TypeVar('AnyStr', bytes, str)




                          # Various ABCs mimicking those in collections.abc.
                          def _alias(origin, params, inst=True):
                          return _GenericAlias(origin, params, special=True, inst=inst)


                          Hashable = _alias(collections.abc.Hashable, ()) # Not generic.
                          Awaitable = _alias(collections.abc.Awaitable, T_co)
                          Coroutine = _alias(collections.abc.Coroutine, (T_co, T_contra, V_co))
                          AsyncIterable = _alias(collections.abc.AsyncIterable, T_co)
                          AsyncIterator = _alias(collections.abc.AsyncIterator, T_co)
                          Iterable = _alias(collections.abc.Iterable, T_co)
                          Iterator = _alias(collections.abc.Iterator, T_co)
                          Reversible = _alias(collections.abc.Reversible, T_co)
                          Sized = _alias(collections.abc.Sized, ()) # Not generic.
                          Container = _alias(collections.abc.Container, T_co)
                          Collection = _alias(collections.abc.Collection, T_co)
                          Callable = _VariadicGenericAlias(collections.abc.Callable, (), special=True)
                          Callable.__doc__ = \
                          """Callable type; Callable[[int], str] is a function of (int) -> str.
                          The subscription syntax must always be used with exactly two
                          values: the argument list and the return type. The argument list
                          must be a list of types or ellipsis; the return type must be a single type.
                          There is no syntax to indicate optional or keyword arguments,
                          such function types are rarely used as callback types.
                          """
                          AbstractSet = _alias(collections.abc.Set, T_co)
                          MutableSet = _alias(collections.abc.MutableSet, T)
                          # NOTE: Mapping is only covariant in the value type.
                          Mapping = _alias(collections.abc.Mapping, (KT, VT_co))
                          MutableMapping = _alias(collections.abc.MutableMapping, (KT, VT))
                          Sequence = _alias(collections.abc.Sequence, T_co)
                          MutableSequence = _alias(collections.abc.MutableSequence, T)
                          ByteString = _alias(collections.abc.ByteString, ()) # Not generic
                          Tuple = _VariadicGenericAlias(tuple, (), inst=False, special=True)
                          Tuple.__doc__ = \
                          """Tuple type; Tuple[X, Y] is the cross-product type of X and Y.
                          Example: Tuple[T1, T2] is a tuple of two elements corresponding
                          to type variables T1 and T2. Tuple[int, float, str] is a tuple
                          of an int, a float and a string.
                          To specify a variable-length tuple of homogeneous type, use Tuple[T, ...].
                          """
                          List = _alias(list, T, inst=False)
                          Deque = _alias(collections.deque, T)
                          Set = _alias(set, T, inst=False)
                          FrozenSet = _alias(frozenset, T_co, inst=False)
                          MappingView = _alias(collections.abc.MappingView, T_co)
                          KeysView = _alias(collections.abc.KeysView, KT)
                          ItemsView = _alias(collections.abc.ItemsView, (KT, VT_co))
                          ValuesView = _alias(collections.abc.ValuesView, VT_co)
                          ContextManager = _alias(contextlib.AbstractContextManager, T_co)
                          AsyncContextManager = _alias(contextlib.AbstractAsyncContextManager, T_co)
                          Dict = _alias(dict, (KT, VT), inst=False)
                          DefaultDict = _alias(collections.defaultdict, (KT, VT))
                          OrderedDict = _alias(collections.OrderedDict, (KT, VT))
                          Counter = _alias(collections.Counter, T)
                          ChainMap = _alias(collections.ChainMap, (KT, VT))
                          Generator = _alias(collections.abc.Generator, (T_co, T_contra, V_co))
                          AsyncGenerator = _alias(collections.abc.AsyncGenerator, (T_co, T_contra))
                          Type = _alias(type, CT_co, inst=False)
                          Type.__doc__ = \
                          """A special construct usable to annotate class objects.
                          For example, suppose we have the following classes::
                          class User: ... # Abstract base for User classes
                          class BasicUser(User): ...
                          class ProUser(User): ...
                          class TeamUser(User): ...
                          And a function that takes a class argument that's a subclass of
                          User and returns an instance of the corresponding class::
                          U = TypeVar('U', bound=User)
                          def new_user(user_class: Type[U]) -> U:
                          user = user_class()
                          # (Here we could write the user object to a database)
                          return user
                          joe = new_user(BasicUser)
                          At this point the type checker knows that joe has type BasicUser.
                          """
                          @runtime_checkable
                          class SupportsInt(Protocol):
                          """An ABC with one abstract method __int__."""
                          __slots__ = ()


                          @abstractmethod
                          def __int__(self) -> int:
                          pass
                          @runtime_checkable
                          class SupportsFloat(Protocol):
                          """An ABC with one abstract method __float__."""
                          __slots__ = ()


                          @abstractmethod
                          def __float__(self) -> float:
                          pass
                          @runtime_checkable
                          class SupportsComplex(Protocol):
                          """An ABC with one abstract method __complex__."""
                          __slots__ = ()


                          @abstractmethod
                          def __complex__(self) -> complex:
                          pass
                          @runtime_checkable
                          class SupportsBytes(Protocol):
                          """An ABC with one abstract method __bytes__."""
                          __slots__ = ()


                          @abstractmethod
                          def __bytes__(self) -> bytes:
                          pass
                          @runtime_checkable
                          class SupportsIndex(Protocol):
                          """An ABC with one abstract method __index__."""
                          __slots__ = ()


                          @abstractmethod
                          def __index__(self) -> int:
                          pass
                          @runtime_checkable
                          class SupportsAbs(Protocol[T_co]):
                          """An ABC with one abstract method __abs__ that is covariant in its return type."""
                          __slots__ = ()


                          @abstractmethod
                          def __abs__(self) -> T_co:
                          pass
                          @runtime_checkable
                          class SupportsRound(Protocol[T_co]):
                          """An ABC with one abstract method __round__ that is covariant in its return type."""
                          __slots__ = ()


                          @abstractmethod
                          def __round__(self, ndigits: int = 0) -> T_co:
                          pass
                          def _make_nmtuple(name, types):
                          msg = "NamedTuple('Name', [(f0, t0), (f1, t1), ...]); each t must be a type"
                          types = [(n, _type_check(t, msg)) for n, t in types]
                          nm_tpl = collections.namedtuple(name, [n for n, t in types])
                          # Prior to PEP 526, only _field_types attribute was assigned.
                          # Now __annotations__ are used and _field_types is deprecated (remove in 3.9)
                          nm_tpl.__annotations__ = nm_tpl._field_types = dict(types)
                          try:
                          nm_tpl.__module__ = sys._getframe(2).f_globals.get('__name__', '__main__')
                          except (AttributeError, ValueError):
                          pass
                          return nm_tpl




                          # attributes prohibited to set in NamedTuple class syntax
                          _prohibited = ('__new__', '__init__', '__slots__', '__getnewargs__',
                          '_fields', '_field_defaults', '_field_types',
                          '_make', '_replace', '_asdict', '_source')


                          _special = ('__module__', '__name__', '__annotations__')




                          class NamedTupleMeta(type):


                          def __new__(cls, typename, bases, ns):
                          if ns.get('_root', False):
                          return super().__new__(cls, typename, bases, ns)
                          types = ns.get('__annotations__', {})
                          nm_tpl = _make_nmtuple(typename, types.items())
                          defaults = []
                          defaults_dict = {}
                          for field_name in types:
                          if field_name in ns:
                          default_value = ns[field_name]
                          defaults.append(default_value)
                          defaults_dict[field_name] = default_value
                          elif defaults:
                          raise TypeError("Non-default namedtuple field {field_name} cannot "
                          "follow default field(s) {default_names}"
                          .format(field_name=field_name,
                          default_names=', '.join(defaults_dict.keys())))
                          nm_tpl.__new__.__annotations__ = dict(types)
                          nm_tpl.__new__.__defaults__ = tuple(defaults)
                          nm_tpl._field_defaults = defaults_dict
                          # update from user namespace without overriding special namedtuple attributes
                          for key in ns:
                          if key in _prohibited:
                          raise AttributeError("Cannot overwrite NamedTuple attribute " + key)
                          elif key not in _special and key not in nm_tpl._fields:
                          setattr(nm_tpl, key, ns[key])
                          return nm_tpl




                          class NamedTuple(metaclass=NamedTupleMeta):
                          """Typed version of namedtuple.
                          Usage in Python versions >= 3.6::
                          class Employee(NamedTuple):
                          name: str
                          id: int
                          This is equivalent to::
                          Employee = collections.namedtuple('Employee', ['name', 'id'])
                          The resulting class has an extra __annotations__ attribute, giving a
                          dict that maps field names to types. (The field names are also in
                          the _fields attribute, which is part of the namedtuple API.)
                          Alternative equivalent keyword syntax is also accepted::
                          Employee = NamedTuple('Employee', name=str, id=int)
                          In Python versions <= 3.5 use::
                          Employee = NamedTuple('Employee', [('name', str), ('id', int)])
                          """
                          _root = True
                          def __new__(*args, **kwargs):
                          if not args:
                          raise TypeError('NamedTuple.__new__(): not enough arguments')
                          cls, *args = args # allow the "cls" keyword be passed
                          if args:
                          typename, *args = args # allow the "typename" keyword be passed
                          elif 'typename' in kwargs:
                          typename = kwargs.pop('typename')
                          import warnings
                          warnings.warn("Passing 'typename' as keyword argument is deprecated",
                          DeprecationWarning, stacklevel=2)
                          else:
                          raise TypeError("NamedTuple.__new__() missing 1 required positional "
                          "argument: 'typename'")
                          if args:
                          try:
                          fields, = args # allow the "fields" keyword be passed
                          except ValueError:
                          raise TypeError(f'NamedTuple.__new__() takes from 2 to 3 '
                          f'positional arguments but {len(args) + 2} '
                          f'were given') from None
                          elif 'fields' in kwargs and len(kwargs) == 1:
                          fields = kwargs.pop('fields')
                          import warnings
                          warnings.warn("Passing 'fields' as keyword argument is deprecated",
                          DeprecationWarning, stacklevel=2)
                          else:
                          fields = None
                          if fields is None:
                          fields = kwargs.items()
                          elif kwargs:
                          raise TypeError("Either list of fields or keywords"
                          " can be provided to NamedTuple, not both")
                          return _make_nmtuple(typename, fields)
                          __new__.__text_signature__ = '($cls, typename, fields=None, , **kwargs)'
                          def _dict_new(cls, , *args, **kwargs):
                          return dict(*args, **kwargs)




                          def _typeddict_new(cls, typename, fields=None, , *, total=True, **kwargs):
                          if fields is None:
                          fields = kwargs
                          elif kwargs:
                          raise TypeError("TypedDict takes either a dict or keyword arguments,"
                          " but not both")


                          ns = {'__annotations__': dict(fields), '__total__': total}
                          try:
                          # Setting correct module is necessary to make typed dict classes pickleable.
                          ns['__module__'] = sys._getframe(1).f_globals.get('__name__', '__main__')
                          except (AttributeError, ValueError):
                          pass
                          return _TypedDictMeta(typename, (), ns)




                          def _check_fails(cls, other):
                          # Typed dicts are only for static structural subtyping.
                          raise TypeError('TypedDict does not support instance and class checks')




                          class _TypedDictMeta(type):
                          def __new__(cls, name, bases, ns, total=True):
                          """Create new typed dict class object.
                          This method is called directly when TypedDict is subclassed,
                          or via _typeddict_new when TypedDict is instantiated. This way
                          TypedDict supports all three syntax forms described in its docstring.
                          Subclasses and instances of TypedDict return actual dictionaries
                          via _dict_new.
                          """
                          ns['__new__'] = _typeddict_new if name == 'TypedDict' else _dict_new
                          tp_dict = super(_TypedDictMeta, cls).__new__(cls, name, (dict,), ns)


                          anns = ns.get('__annotations__', {})
                          msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type"
                          anns = {n: _type_check(tp, msg) for n, tp in anns.items()}
                          for base in bases:
                          anns.update(base.__dict__.get('__annotations__', {}))
                          tp_dict.__annotations__ = anns
                          if not hasattr(tp_dict, '__total__'):
                          tp_dict.__total__ = total
                          return tp_dict


                          __instancecheck__ = __subclasscheck__ = _check_fails




                          class TypedDict(dict, metaclass=_TypedDictMeta):
                          """A simple typed namespace. At runtime it is equivalent to a plain dict.
                          TypedDict creates a dictionary type that expects all of its
                          instances to have a certain set of keys, where each key is
                          associated with a value of a consistent type. This expectation
                          is not checked at runtime but is only enforced by type checkers.
                          Usage::
                          class Point2D(TypedDict):
                          x: int
                          y: int
                          label: str
                          a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK
                          b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check
                          assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
                          The type info can be accessed via Point2D.__annotations__. TypedDict
                          supports two additional equivalent forms::
                          Point2D = TypedDict('Point2D', x=int, y=int, label=str)
                          Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
                          By default, all keys must be present in a TypedDict. It is possible
                          to override this by specifying totality.
                          Usage::
                          class point2D(TypedDict, total=False):
                          x: int
                          y: int
                          This means that a point2D TypedDict can have any of the keys omitted.A type
                          checker is only expected to support a literal False or True as the value of
                          the total argument. True is the default, and makes all items defined in the
                          class body be required.
                          The class syntax is only supported in Python 3.6+, while two other
                          syntax forms work for Python 2.7 and 3.2+
                          """
                          def NewType(name, tp):
                          """NewType creates simple unique types with almost zero
                          runtime overhead. NewType(name, tp) is considered a subtype of tp
                          by static type checkers. At runtime, NewType(name, tp) returns
                          a dummy function that simply returns its argument. Usage::
                          UserId = NewType('UserId', int)
                          def name_by_id(user_id: UserId) -> str:
                          ...
                          UserId('user') # Fails type check
                          name_by_id(42) # Fails type check
                          name_by_id(UserId(42)) # OK
                          num = UserId(5) + 1 # type: int
                          """
                          def new_type(x):
                          return x
                          new_type.__name__ = name
                          new_type.__supertype__ = tp
                          return new_type




                          # Python-version-specific alias (Python 2: unicode; Python 3: str)
                          Text = str
                          # Constant that's True when type checking, but False here.
                          TYPE_CHECKING = False
                          class IO(Generic[AnyStr]):
                          """Generic base class for TextIO and BinaryIO.
                          This is an abstract, generic version of the return of open().
                          NOTE: This does not distinguish between the different possible
                          classes (text vs. binary, read vs. write vs. read/write,
                          append-only, unbuffered). The TextIO and BinaryIO subclasses
                          below capture the distinctions between text vs. binary, which is
                          pervasive in the interface; however we currently do not offer a
                          way to track the other distinctions in the type system.
                          """
                          __slots__ = ()


                          @property
                          @abstractmethod
                          def mode(self) -> str:
                          pass
                          @property
                          @abstractmethod
                          def name(self) -> str:
                          pass
                          @abstractmethod
                          def close(self) -> None:
                          pass
                          @property
                          @abstractmethod
                          def closed(self) -> bool:
                          pass
                          @abstractmethod
                          def fileno(self) -> int:
                          pass
                          @abstractmethod
                          def flush(self) -> None:
                          pass
                          @abstractmethod
                          def isatty(self) -> bool:
                          pass
                          @abstractmethod
                          def read(self, n: int = -1) -> AnyStr:
                          pass
                          @abstractmethod
                          def readable(self) -> bool:
                          pass
                          @abstractmethod
                          def readline(self, limit: int = -1) -> AnyStr:
                          pass
                          @abstractmethod
                          def readlines(self, hint: int = -1) -> List[AnyStr]:
                          pass
                          @abstractmethod
                          def seek(self, offset: int, whence: int = 0) -> int:
                          pass
                          @abstractmethod
                          def seekable(self) -> bool:
                          pass
                          @abstractmethod
                          def tell(self) -> int:
                          pass
                          @abstractmethod
                          def truncate(self, size: int = None) -> int:
                          pass
                          @abstractmethod
                          def writable(self) -> bool:
                          pass
                          @abstractmethod
                          def write(self, s: AnyStr) -> int:
                          pass
                          @abstractmethod
                          def writelines(self, lines: List[AnyStr]) -> None:
                          pass
                          @abstractmethod
                          def __enter__(self) -> 'IO[AnyStr]':
                          pass
                          @abstractmethod
                          def __exit__(self, type, value, traceback) -> None:
                          pass
                          class BinaryIO(IO[bytes]):
                          """Typed version of the return of open() in binary mode."""
                          __slots__ = ()


                          @abstractmethod
                          def write(self, s: Union[bytes, bytearray]) -> int:
                          pass
                          @abstractmethod
                          def __enter__(self) -> 'BinaryIO':
                          pass
                          class TextIO(IO[str]):
                          """Typed version of the return of open() in text mode."""
                          __slots__ = ()


                          @property
                          @abstractmethod
                          def buffer(self) -> BinaryIO:
                          pass
                          @property
                          @abstractmethod
                          def encoding(self) -> str:
                          pass
                          @property
                          @abstractmethod
                          def errors(self) -> Optional[str]:
                          pass
                          @property
                          @abstractmethod
                          def line_buffering(self) -> bool:
                          pass
                          @property
                          @abstractmethod
                          def newlines(self) -> Any:
                          pass
                          @abstractmethod
                          def __enter__(self) -> 'TextIO':
                          pass
                          class io:
                          """Wrapper namespace for IO generic classes."""
                          __all__ = ['IO', 'TextIO', 'BinaryIO']
                          IO = IO
                          TextIO = TextIO
                          BinaryIO = BinaryIO




                          io.__name__ = __name__ + '.io'
                          sys.modules[io.__name__] = io


                          Pattern = _alias(stdlib_re.Pattern, AnyStr)
                          Match = _alias(stdlib_re.Match, AnyStr)


                          class re:
                          """Wrapper namespace for re type aliases."""
                          __all__ = ['Pattern', 'Match']
                          Pattern = Pattern
                          Match = Match




                          re.__name__ = __name__ + '.re'
                          sys.modules[re.__name__] = re


                          文章转载自心在远方AND走在路上,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

                          评论