暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

RedHat7.6离线情况下—CUDA+cuDNN+caffe2+Detectron环境搭建

小白学一学 2019-04-08
1185

离线环境下相关软件包需要提前下载再安装!

背景:

(1)操作系统-RedHat7.6

(2)显卡-Tesla P100

(3)无网络




一、Anaconda

1、官网https://repo.continuum.io/archive/index.html下载.sh文件并安装:

    bash Anaconda3-5.1.0-Linux-x86_64.sh

    2、添加环境变量

      vi etc/profile

      添加export PATH=/home/xxx/anaconda3/bin:$PATH

      3、生效:

        source etc/profile

        4、测试:conda list有输出,则安装成功




        二、显卡驱动安装

        1、禁用自带驱动-Disable the Nouveau drivers

        (1)创建blacklist

          vi etc/modprobe.d/blacklist.conf

          (2)添加blacklist nouveau到文档尾

          blacklist nouveau

          options nouveau modeset=0

          (3)更新配置

            mv boot/initramfs-$(uname -r).img boot/initramfs-$(uname-r)-nouveau.img.bak
            dracut -v boot/initramfs-$(uname -r).img $(uname -r)


            (4)重启服务器:

              reboot

              (5)测试:运行

                lsmod | grep nouveau

                无输出确认已禁用

                2、安装适配驱动

                (1)NVIDIA官网按照服务器配置下载

                (2)按照官网步骤安装

                (3)重启reboot后输入nvidia-smi确认输出信息




                三、CUDA安装

                1、官网下载

                https://developer.nvidia.com/cuda-downloads

                2、官网安装

                按照官网教程https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

                (1)Pre-installation Actions若此前不确定是否可安装CUDA,可按下述内容确认

                确认GPU:

                  lspci | grep -i nvidia

                  确认系统:

                    uname -m && cat etc/*release

                    得到类似下面的输出

                    x86_64
                    Red Hat Enterprise Linux Workstation release 6.0 (Santiago)

                    确认kernel-devel、kernel-headers,若未有从yum源进行安装

                      uname -r
                        yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r)

                        (2)若有原安装,先卸载

                        (3)若前面未安装驱动可在安装过程中选择安装(注意禁用驱动-Disable the Nouveau drivers),若已单独安装驱动此过程选择不安

                        (4)安装

                          sudo sh cuda_<version>_linux.run

                          3、安装后的操作

                          (1)环境变量

                            export CUDA_HOME=/opt/nvidia/cuda
                            export LD_LIBRARY_PATH=/opt/nvidia/cuda/lib64:/usr/local/bin

                            (2)查看安装信息




                            四、cuDNN安装

                            1、官网下载

                            https://developer.nvidia.com/rdp/cudnn-download

                            或者下载cuDNN Library for Linux

                            2、官网安装

                            https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html

                            (1)rpm安装

                            rpm -i libcudnn7-7.5.0.56-1.cuda10.1.x86_64.rpm

                              rpm -i libcudnn7-7.5.0.56-1.cuda10.1.x86_64.rpm
                              rpm -i libcudnn7-devel-7.5.0.56-1.cuda10.1.x86_64.rpm
                              rpm -i libcudnn7-doc-7.5.0.56-1.cuda10.1.x86_64.rpm

                              (2)tar安装

                                tar -xzvf cudnn-9.2-linux-x64-v7.5.0.56.tgz
                                sudo cp cuda/include/cudnn.h /usr/local/cuda/include
                                sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
                                sudochmod a+r usr/local/cuda/include/cudnn.h usr/local/cuda/lib64/libcudnn*


                                3、验证




                                五、caffe2

                                1、前言

                                (1)2018年Caffe2 开源代码正式并入 PyTorch,故下载及安装可参照pytorch,也可依据caffe2官网安装

                                https://pytorch.org/

                                https://caffe2.ai/

                                (2)查看系统支持情况

                                2、离线情况采用源码安装

                                下文为按照caffe2官网https://caffe2.ai/docs/getting-started.html?platform=centos&configuration=cloud

                                (1)事前准备(前面已按顺序安装1/2)

                                (2)安装依赖,从yum源安装,对于yum源缺少的可事先下载相应包(https://pkgs.org/)再安装

                                (3)python dependencies同理

                                离线环境下,使用conda list确认上述已安装的包,对于缺少部分先下载后再安装。

                                (https://pkgs.org/)(https://pypi.org/)

                                rpm:rpm -i xxx.rpm

                                whl:pip install xxx.whl

                                tar:tar -zxvf xxx .tar.gz、tar -jxvf xxx .tar.bz(或bz2)解压后查看目录是采用make安装还是setup.py,若有setup.py,则python setup.py install

                                (4)源码克隆及安装

                                3、测试


                                  # To check if Caffe2 build was successful
                                  python -c 'from caffe2.python import core' 2>/dev/null && echo "Success" || echo "Failure"
                                  # To check if Caffe2 GPU build was successful
                                  # This must print a number > 0 in order to use Detectron
                                  python -c 'from caffe2.python import workspace; print(workspace.NumCudaDevices())'

                                  若进一步使用Facebook Detectron平台,则继续下面部分




                                  六、COCOAPI


                                    # COCOAPI=/path/to/clone/cocoapi
                                    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
                                    cd $COCOAPI/PythonAPI
                                    # Install into global site-packages
                                    make install
                                    # Alternatively, if you do not have permissions or prefer
                                    # not to install the COCO API into global site-packages
                                    python setup.py install --user



                                    七、Detectron

                                    Clone the Detectron repository:

                                      # DETECTRON=/path/to/clone/detectron
                                      git clone https://github.com/facebookresearch/detectron $DETECTRON


                                      Install Python dependencies:

                                        pip install -r $DETECTRON/requirements.txt

                                        Set up Python modules:

                                          cd $DETECTRON && make

                                          Check that Detectron tests pass (e.g. for SpatialNarrowAsOp test
                                          ):

                                            python $DETECTRON/detectron/tests/test_spatial_narrow_as_op.py
                                            文章转载自小白学一学,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

                                            评论