暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

ROS导航-MoveBaseROS导航-MoveBase

慢慢的回味 2021-10-19
459

本文链接地址: ROS导航-MoveBase

MoveBase包通过全局规划器和局部规划器,利用代价地图costmap来实现当前地点到目标地点的导航。其中,costmap由map和小车传感器共同决定。现在通过对其的源码解读来了解这个框架是怎么完成这个任务的。

Content:

  1. 1 调用流程

  2. 2 MoveBase Node创建

  3. 3 Action server(as_)接收导航目标

  4. 4 规划全局路径

  5. 5 局部导航控制



1 调用流程

–> MoveBase Node创建:MoveBase::MoveBase(tf2_ros::Buffer& tf)
–> Action server(as_)接收导航目标:void MoveBase::executeCb(const move_base_msgs::MoveBaseGoalConstPtr& move_base_goal)
–> runPlanner_值改变为true,导航线程void MoveBase::planThread()开始调用全局规划器planner_规划全局路径bool MoveBase::makePlan(const geometry_msgs::PoseStamped& goal, std::vector<:posestamped style="box-sizing: inherit;">& plan)
–> 一旦进入到控制状态CONTROLLING,MoveBase::executeCycle负责调用局部规划器tc_进行局部导航控制

2 MoveBase Node创建

构造方法MoveBase::MoveBase:
初始化类加载器,全局规划器加载器bgp_loader_,局部规划器加载器blp_loader_,已经初始化一些全局变量。

  MoveBase::MoveBase(tf2_ros::Buffer& tf) :
tf_(tf),
as_(NULL),
planner_costmap_ros_(NULL), controller_costmap_ros_(NULL),
bgp_loader_("nav_core", "nav_core::BaseGlobalPlanner"),
blp_loader_("nav_core", "nav_core::BaseLocalPlanner"),
recovery_loader_("nav_core", "nav_core::RecoveryBehavior"),
planner_plan_(NULL), latest_plan_(NULL), controller_plan_(NULL),
runPlanner_(false), setup_(false), p_freq_change_(false), c_freq_change_(false), new_global_plan_(false) {

创建一个Action Server,回调函数为executeCb:

    as_ = new MoveBaseActionServer(ros::NodeHandle(), "move_base", boost::bind(&MoveBase::executeCb, this, _1), false);

获取node的参数,默认全局规划器为NavfnROS,局部规划器为TrajectoryPlannerROS:

    ros::NodeHandle private_nh("~");
ros::NodeHandle nh;
 
recovery_trigger_ = PLANNING_R;
 
//get some parameters that will be global to the move base node
std::string global_planner, local_planner;
private_nh.param("base_global_planner", global_planner, std::string("navfn/NavfnROS"));
private_nh.param("base_local_planner", local_planner, std::string("base_local_planner/TrajectoryPlannerROS"));
private_nh.param("global_costmap/robot_base_frame", robot_base_frame_, std::string("base_link"));
private_nh.param("global_costmap/global_frame", global_frame_, std::string("map"));
private_nh.param("planner_frequency", planner_frequency_, 0.0);
private_nh.param("controller_frequency", controller_frequency_, 20.0);
private_nh.param("planner_patience", planner_patience_, 5.0);
private_nh.param("controller_patience", controller_patience_, 15.0);
private_nh.param("max_planning_retries", max_planning_retries_, -1); // disabled by default
 
private_nh.param("oscillation_timeout", oscillation_timeout_, 0.0);
private_nh.param("oscillation_distance", oscillation_distance_, 0.5);

设置3个plan,全局规划plan planner_plan_ ,最新的plan latest_plan_和局部控制plan controller_plan_,开启规划线程:

    //set up plan triple buffer
planner_plan_ = new std::vector<geometry_msgs::PoseStamped>();
latest_plan_ = new std::vector<geometry_msgs::PoseStamped>();
controller_plan_ = new std::vector<geometry_msgs::PoseStamped>();
 
//set up the planner's thread
planner_thread_ = new boost::thread(boost::bind(&MoveBase::planThread, this));

publish 2个服务,cmd_vel发布速度,下位机收到后控制小车运动,action_goal_pub_发布当前目标到action server,goal_sub_订阅goal比如来自rviz里的,回调函数MoveBase::goalCB把goal封装成MoveBaseActionGoal发送给action server,而后引起回调MoveBase::executeCb:

    //for commanding the base
vel_pub_ = nh.advertise<geometry_msgs::Twist>("cmd_vel", 1);
//current_goal_pub_发布当前的goal
current_goal_pub_ = private_nh.advertise<geometry_msgs::PoseStamped>("current_goal", 0 );
 
ros::NodeHandle action_nh("move_base");
action_goal_pub_ = action_nh.advertise<move_base_msgs::MoveBaseActionGoal>("goal", 1);
 
//提供一个goal的回调机制来支持比如rviz动态设置目标goal。
//we'll provide a mechanism for some people to send goals as PoseStamped messages over a topic
//they won't get any useful information back about its status, but this is useful for tools
//like nav_view and rviz
ros::NodeHandle simple_nh("move_base_simple");
//goal_sub_订阅goal后可以开始规划。
goal_sub_ = simple_nh.subscribe<geometry_msgs::PoseStamped>("goal", 1, boost::bind(&MoveBase::goalCB, this, _1));
 
//局部规划器会使用inscribed_radius和circumscribed_radius来检查是否碰到障碍物。
//we'll assume the radius of the robot to be consistent with what's specified for the costmaps
private_nh.param("local_costmap/inscribed_radius", inscribed_radius_, 0.325);
private_nh.param("local_costmap/circumscribed_radius", circumscribed_radius_, 0.46);
private_nh.param("clearing_radius", clearing_radius_, circumscribed_radius_);
private_nh.param("conservative_reset_dist", conservative_reset_dist_, 3.0);
 
private_nh.param("shutdown_costmaps", shutdown_costmaps_, false);
private_nh.param("clearing_rotation_allowed", clearing_rotation_allowed_, true);
private_nh.param("recovery_behavior_enabled", recovery_behavior_enabled_, true);

初始化全局规划器planner_ 和局部规划器tc_:

//初始化全局规划器代价地图planner_costmap_ros_ 
//create the ros wrapper for the planner's costmap... and initializer a pointer we'll use with the underlying map
planner_costmap_ros_ = new costmap_2d::Costmap2DROS("global_costmap", tf_);
planner_costmap_ros_->pause();
 
//initialize the global planner
try {
planner_ = bgp_loader_.createInstance(global_planner);
planner_->initialize(bgp_loader_.getName(global_planner), planner_costmap_ros_);
} catch (const pluginlib::PluginlibException& ex) {
ROS_FATAL("Failed to create the %s planner, are you sure it is properly registered and that the containing library is built? Exception: %s", global_planner.c_str(), ex.what());
exit(1);
}
 
//初始化局部规划器代价地图controller_costmap_ros_
//create the ros wrapper for the controller's costmap... and initializer a pointer we'll use with the underlying map
controller_costmap_ros_ = new costmap_2d::Costmap2DROS("local_costmap", tf_);
controller_costmap_ros_->pause();
 
//create a local planner
try {
tc_ = blp_loader_.createInstance(local_planner);
ROS_INFO("Created local_planner %s", local_planner.c_str());
tc_->initialize(blp_loader_.getName(local_planner), &tf_, controller_costmap_ros_);
} catch (const pluginlib::PluginlibException& ex) {
ROS_FATAL("Failed to create the %s planner, are you sure it is properly registered and that the containing library is built? Exception: %s", local_planner.c_str(), ex.what());
exit(1);
}

根据自己的传感器数据更新全局和局部代价地图,以及发布2个服务:

//让代价地图开始接受传感器的数据以更新地图
// Start actively updating costmaps based on sensor data
planner_costmap_ros_->start();
controller_costmap_ros_->start();
 
//发布全局规划服务
//advertise a service for getting a plan
make_plan_srv_ = private_nh.advertiseService("make_plan", &MoveBase::planService, this);
 
//advertise a service for clearing the costmaps
clear_costmaps_srv_ = private_nh.advertiseService("clear_costmaps", &MoveBase::clearCostmapsService, this);
 
//if we shutdown our costmaps when we're deactivated... we'll do that now
if(shutdown_costmaps_){
ROS_DEBUG_NAMED("move_base","Stopping costmaps initially");
planner_costmap_ros_->stop();
controller_costmap_ros_->stop();
}
 
//加载默认错误恢复行为
//load any user specified recovery behaviors, and if that fails load the defaults
if(!loadRecoveryBehaviors(private_nh)){
loadDefaultRecoveryBehaviors();
}

初始化为PLANNING状态,开启action server(as_),开启动态参数配置服务:

    //initially, we'll need to make a plan
state_ = PLANNING;
 
//we'll start executing recovery behaviors at the beginning of our list
recovery_index_ = 0;
 
//we're all set up now so we can start the action server
as_->start();
 
//开启Move_base的参数动态配置
dsrv_ = new dynamic_reconfigure::Server<move_base::MoveBaseConfig>(ros::NodeHandle("~"));
dynamic_reconfigure::Server<move_base::MoveBaseConfig>::CallbackType cb = boost::bind(&MoveBase::reconfigureCB, this, _1, _2);
dsrv_->setCallback(cb);
}
3 Action server(as_)接收导航目标

此回调函数的主要逻辑就是:一直循环,当收到新的goal后,设置runPlanner_ = true使全局规划线程可以进行全局规划。循环中调用executeCycle,一旦全局规划成功,其局部规划便会启用并返回小车的目标速度和方向,从而发布速度控制指令给下位机(下位机可以根据速度命令控制电动机驱动小车达到要求的速度)。

  void MoveBase::executeCb(const move_base_msgs::MoveBaseGoalConstPtr& move_base_goal)
{
if(!isQuaternionValid(move_base_goal->target_pose.pose.orientation)){
as_->setAborted(move_base_msgs::MoveBaseResult(), "Aborting on goal because it was sent with an invalid quaternion");
return;
}
 
geometry_msgs::PoseStamped goal = goalToGlobalFrame(move_base_goal->target_pose);
 
publishZeroVelocity();
//we have a goal so start the planner
boost::unique_lock<boost::recursive_mutex> lock(planner_mutex_);
planner_goal_ = goal;
runPlanner_ = true;
planner_cond_.notify_one();
lock.unlock();
 
current_goal_pub_.publish(goal);
std::vector<geometry_msgs::PoseStamped> global_plan;
 
ros::Rate r(controller_frequency_);
if(shutdown_costmaps_){
ROS_DEBUG_NAMED("move_base","Starting up costmaps that were shut down previously");
planner_costmap_ros_->start();
controller_costmap_ros_->start();
}
 
//we want to make sure that we reset the last time we had a valid plan and control
last_valid_control_ = ros::Time::now();
last_valid_plan_ = ros::Time::now();
last_oscillation_reset_ = ros::Time::now();
planning_retries_ = 0;
 
ros::NodeHandle n;
while(n.ok())
{
if(c_freq_change_)
{
ROS_INFO("Setting controller frequency to %.2f", controller_frequency_);
r = ros::Rate(controller_frequency_);
c_freq_change_ = false;
}
 
if(as_->isPreemptRequested()){
if(as_->isNewGoalAvailable()){
//if we're active and a new goal is available, we'll accept it, but we won't shut anything down
move_base_msgs::MoveBaseGoal new_goal = *as_->acceptNewGoal();
 
if(!isQuaternionValid(new_goal.target_pose.pose.orientation)){
as_->setAborted(move_base_msgs::MoveBaseResult(), "Aborting on goal because it was sent with an invalid quaternion");
return;
}
 
goal = goalToGlobalFrame(new_goal.target_pose);
 
//we'll make sure that we reset our state for the next execution cycle
recovery_index_ = 0;
state_ = PLANNING;
 
//we have a new goal so make sure the planner is awake
lock.lock();
planner_goal_ = goal;
runPlanner_ = true;
planner_cond_.notify_one();
lock.unlock();
 
//发布当前的目标goal,其它订阅的节点就可以更新其对应的机制。
//publish the goal point to the visualizer
ROS_DEBUG_NAMED("move_base","move_base has received a goal of x: %.2f, y: %.2f", goal.pose.position.x, goal.pose.position.y);
current_goal_pub_.publish(goal);
 
//make sure to reset our timeouts and counters
last_valid_control_ = ros::Time::now();
last_valid_plan_ = ros::Time::now();
last_oscillation_reset_ = ros::Time::now();
planning_retries_ = 0;
}
else {
//if we've been preempted explicitly we need to shut things down
resetState();
 
//notify the ActionServer that we've successfully preempted
ROS_DEBUG_NAMED("move_base","Move base preempting the current goal");
as_->setPreempted();
 
//we'll actually return from execute after preempting
return;
}
}
 
//we also want to check if we've changed global frames because we need to transform our goal pose
if(goal.header.frame_id != planner_costmap_ros_->getGlobalFrameID()){
goal = goalToGlobalFrame(goal);
 
//we want to go back to the planning state for the next execution cycle
recovery_index_ = 0;
state_ = PLANNING;
 
//we have a new goal so make sure the planner is awake
lock.lock();
planner_goal_ = goal;
//设置runPlanner_为true,线程可以开始全局规划。
runPlanner_ = true;
planner_cond_.notify_one();
lock.unlock();
 
//publish the goal point to the visualizer
ROS_DEBUG_NAMED("move_base","The global frame for move_base has changed, new frame: %s, new goal position x: %.2f, y: %.2f", goal.header.frame_id.c_str(), goal.pose.position.x, goal.pose.position.y);
current_goal_pub_.publish(goal);
 
//make sure to reset our timeouts and counters
last_valid_control_ = ros::Time::now();
last_valid_plan_ = ros::Time::now();
last_oscillation_reset_ = ros::Time::now();
planning_retries_ = 0;
}
 
//for timing that gives real time even in simulation
ros::WallTime start = ros::WallTime::now();
 
//the real work on pursuing a goal is done here
bool done = executeCycle(goal, global_plan);
 
//if we're done, then we'll return from execute
if(done)
return;
 
//check if execution of the goal has completed in some way
 
ros::WallDuration t_diff = ros::WallTime::now() - start;
ROS_DEBUG_NAMED("move_base","Full control cycle time: %.9f\n", t_diff.toSec());
 
r.sleep();
//make sure to sleep for the remainder of our cycle time
if(r.cycleTime() > ros::Duration(1 / controller_frequency_) && state_ == CONTROLLING)
ROS_WARN("Control loop missed its desired rate of %.4fHz... the loop actually took %.4f seconds", controller_frequency_, r.cycleTime().toSec());
}
 
//wake up the planner thread so that it can exit cleanly
lock.lock();
runPlanner_ = true;
planner_cond_.notify_one();
lock.unlock();
 
//if the node is killed then we'll abort and return
as_->setAborted(move_base_msgs::MoveBaseResult(), "Aborting on the goal because the node has been killed");
return;
}
4 规划全局路径

线程的主要逻辑为:当runPlanner_为true时,调用makePlan进行全局规划,成功后进入控制状态state_ = CONTROLLING,供后续的局部规划使用。

  void MoveBase::planThread(){
ROS_DEBUG_NAMED("move_base_plan_thread","Starting planner thread...");
ros::NodeHandle n;
ros::Timer timer;
bool wait_for_wake = false;
boost::unique_lock<boost::recursive_mutex> lock(planner_mutex_);
while(n.ok()){
//参数runPlanner_为true,表示可以开始全局规划,否则继续循环。
//check if we should run the planner (the mutex is locked)
while(wait_for_wake || !runPlanner_){
//if we should not be running the planner then suspend this thread
ROS_DEBUG_NAMED("move_base_plan_thread","Planner thread is suspending");
planner_cond_.wait(lock);
wait_for_wake = false;
}
ros::Time start_time = ros::Time::now();
 
//time to plan! get a copy of the goal and unlock the mutex
geometry_msgs::PoseStamped temp_goal = planner_goal_;
lock.unlock();
ROS_DEBUG_NAMED("move_base_plan_thread","Planning...");
 
//调用makePlan进行全局规划
//run planner
planner_plan_->clear();
bool gotPlan = n.ok() && makePlan(temp_goal, *planner_plan_);
 
if(gotPlan){
ROS_DEBUG_NAMED("move_base_plan_thread","Got Plan with %zu points!", planner_plan_->size());
//pointer swap the plans under mutex (the controller will pull from latest_plan_)
std::vector<geometry_msgs::PoseStamped>* temp_plan = planner_plan_;
 
//planner_plan_是上一次的plan,latest_plan_是这一次的plan
lock.lock();
planner_plan_ = latest_plan_;
latest_plan_ = temp_plan;
last_valid_plan_ = ros::Time::now();
planning_retries_ = 0;
new_global_plan_ = true;
 
ROS_DEBUG_NAMED("move_base_plan_thread","Generated a plan from the base_global_planner");
 
//开始启动局部规划器state_ = CONTROLLING
//make sure we only start the controller if we still haven't reached the goal
if(runPlanner_)
state_ = CONTROLLING;
if(planner_frequency_ <= 0)
runPlanner_ = false;
lock.unlock();
}
//if we didn't get a plan and we are in the planning state (the robot isn't moving)
else if(state_==PLANNING){
ROS_DEBUG_NAMED("move_base_plan_thread","No Plan...");
ros::Time attempt_end = last_valid_plan_ + ros::Duration(planner_patience_);
 
//check if we've tried to make a plan for over our time limit or our maximum number of retries
//issue #496: we stop planning when one of the conditions is true, but if max_planning_retries_
//is negative (the default), it is just ignored and we have the same behavior as ever
lock.lock();
planning_retries_++;
if(runPlanner_ &&
(ros::Time::now() > attempt_end || planning_retries_ > uint32_t(max_planning_retries_))){
//we'll move into our obstacle clearing mode
state_ = CLEARING;
runPlanner_ = false; // proper solution for issue #523
publishZeroVelocity();
recovery_trigger_ = PLANNING_R;
}
 
lock.unlock();
}
 
//take the mutex for the next iteration
lock.lock();
 
//setup sleep interface if needed
if(planner_frequency_ > 0){
ros::Duration sleep_time = (start_time + ros::Duration(1.0/planner_frequency_)) - ros::Time::now();
if (sleep_time > ros::Duration(0.0)){
wait_for_wake = true;
timer = n.createTimer(sleep_time, &MoveBase::wakePlanner, this);
}
}
}
}
5 局部导航控制

当获取到全局规划new_global_plan_后,赋值给局部规划器tc_->setPlan(*controller_plan_),如果进入控制状态后CONTROLLING,就调用局部规划器计算目标速度tc_->computeVelocityCommands(cmd_vel)。

  bool MoveBase::executeCycle(geometry_msgs::PoseStamped& goal, std::vector<geometry_msgs::PoseStamped>& global_plan){
boost::recursive_mutex::scoped_lock ecl(configuration_mutex_);
//we need to be able to publish velocity commands
geometry_msgs::Twist cmd_vel;
 
//update feedback to correspond to our curent position
geometry_msgs::PoseStamped global_pose;
getRobotPose(global_pose, planner_costmap_ros_);
const geometry_msgs::PoseStamped& current_position = global_pose;
 
//push the feedback out
move_base_msgs::MoveBaseFeedback feedback;
feedback.base_position = current_position;
as_->publishFeedback(feedback);
 
//check to see if we've moved far enough to reset our oscillation timeout
if(distance(current_position, oscillation_pose_) >= oscillation_distance_)
{
last_oscillation_reset_ = ros::Time::now();
oscillation_pose_ = current_position;
 
//if our last recovery was caused by oscillation, we want to reset the recovery index
if(recovery_trigger_ == OSCILLATION_R)
recovery_index_ = 0;
}
 
//check that the observation buffers for the costmap are current, we don't want to drive blind
if(!controller_costmap_ros_->isCurrent()){
ROS_WARN("[%s]:Sensor data is out of date, we're not going to allow commanding of the base for safety",ros::this_node::getName().c_str());
publishZeroVelocity();
return false;
}
 
//if we have a new plan then grab it and give it to the controller
if(new_global_plan_){
//make sure to set the new plan flag to false
new_global_plan_ = false;
 
ROS_DEBUG_NAMED("move_base","Got a new plan...swap pointers");
 
//do a pointer swap under mutex
std::vector<geometry_msgs::PoseStamped>* temp_plan = controller_plan_;
 
boost::unique_lock<boost::recursive_mutex> lock(planner_mutex_);
controller_plan_ = latest_plan_;
latest_plan_ = temp_plan;
lock.unlock();
ROS_DEBUG_NAMED("move_base","pointers swapped!");
 
if(!tc_->setPlan(*controller_plan_)){
//ABORT and SHUTDOWN COSTMAPS
ROS_ERROR("Failed to pass global plan to the controller, aborting.");
resetState();
 
//disable the planner thread
lock.lock();
runPlanner_ = false;
lock.unlock();
 
as_->setAborted(move_base_msgs::MoveBaseResult(), "Failed to pass global plan to the controller.");
return true;
}
 
//make sure to reset recovery_index_ since we were able to find a valid plan
if(recovery_trigger_ == PLANNING_R)
recovery_index_ = 0;
}
 
//the move_base state machine, handles the control logic for navigation
switch(state_){
//if we are in a planning state, then we'll attempt to make a plan
case PLANNING:
{
boost::recursive_mutex::scoped_lock lock(planner_mutex_);
runPlanner_ = true;
planner_cond_.notify_one();
}
ROS_DEBUG_NAMED("move_base","Waiting for plan, in the planning state.");
break;
 
//if we're controlling, we'll attempt to find valid velocity commands
case CONTROLLING:
ROS_DEBUG_NAMED("move_base","In controlling state.");
 
//check to see if we've reached our goal
if(tc_->isGoalReached()){
ROS_DEBUG_NAMED("move_base","Goal reached!");
resetState();
 
//disable the planner thread
boost::unique_lock<boost::recursive_mutex> lock(planner_mutex_);
runPlanner_ = false;
lock.unlock();
 
as_->setSucceeded(move_base_msgs::MoveBaseResult(), "Goal reached.");
return true;
}
 
//check for an oscillation condition
if(oscillation_timeout_ > 0.0 &&
last_oscillation_reset_ + ros::Duration(oscillation_timeout_) < ros::Time::now())
{
publishZeroVelocity();
state_ = CLEARING;
recovery_trigger_ = OSCILLATION_R;
}
 
{
boost::unique_lock<costmap_2d::Costmap2D::mutex_t> lock(*(controller_costmap_ros_->getCostmap()->getMutex()));
 
//调用computeVelocityCommands进行局部规划
if(tc_->computeVelocityCommands(cmd_vel)){
ROS_DEBUG_NAMED( "move_base", "Got a valid command from the local planner: %.3lf, %.3lf, %.3lf",
cmd_vel.linear.x, cmd_vel.linear.y, cmd_vel.angular.z );
last_valid_control_ = ros::Time::now();
//make sure that we send the velocity command to the base
vel_pub_.publish(cmd_vel);
if(recovery_trigger_ == CONTROLLING_R)
recovery_index_ = 0;
}
else {
ROS_DEBUG_NAMED("move_base", "The local planner could not find a valid plan.");
ros::Time attempt_end = last_valid_control_ + ros::Duration(controller_patience_);
 
//check if we've tried to find a valid control for longer than our time limit
if(ros::Time::now() > attempt_end){
//we'll move into our obstacle clearing mode
publishZeroVelocity();
state_ = CLEARING;
recovery_trigger_ = CONTROLLING_R;
}
else{
//otherwise, if we can't find a valid control, we'll go back to planning
last_valid_plan_ = ros::Time::now();
planning_retries_ = 0;
state_ = PLANNING;
publishZeroVelocity();
 
//enable the planner thread in case it isn't running on a clock
boost::unique_lock<boost::recursive_mutex> lock(planner_mutex_);
runPlanner_ = true;
planner_cond_.notify_one();
lock.unlock();
}
}
}
 
break;
 
//we'll try to clear out space with any user-provided recovery behaviors
case CLEARING:
ROS_DEBUG_NAMED("move_base","In clearing/recovery state");
//we'll invoke whatever recovery behavior we're currently on if they're enabled
if(recovery_behavior_enabled_ && recovery_index_ < recovery_behaviors_.size()){
ROS_DEBUG_NAMED("move_base_recovery","Executing behavior %u of %zu", recovery_index_, recovery_behaviors_.size());
recovery_behaviors_[recovery_index_]->runBehavior();
 
//we at least want to give the robot some time to stop oscillating after executing the behavior
last_oscillation_reset_ = ros::Time::now();
 
//we'll check if the recovery behavior actually worked
ROS_DEBUG_NAMED("move_base_recovery","Going back to planning state");
last_valid_plan_ = ros::Time::now();
planning_retries_ = 0;
state_ = PLANNING;
 
//update the index of the next recovery behavior that we'll try
recovery_index_++;
}
else{
ROS_DEBUG_NAMED("move_base_recovery","All recovery behaviors have failed, locking the planner and disabling it.");
//disable the planner thread
boost::unique_lock<boost::recursive_mutex> lock(planner_mutex_);
runPlanner_ = false;
lock.unlock();
 
ROS_DEBUG_NAMED("move_base_recovery","Something should abort after this.");
 
if(recovery_trigger_ == CONTROLLING_R){
ROS_ERROR("Aborting because a valid control could not be found. Even after executing all recovery behaviors");
as_->setAborted(move_base_msgs::MoveBaseResult(), "Failed to find a valid control. Even after executing recovery behaviors.");
}
else if(recovery_trigger_ == PLANNING_R){
ROS_ERROR("Aborting because a valid plan could not be found. Even after executing all recovery behaviors");
as_->setAborted(move_base_msgs::MoveBaseResult(), "Failed to find a valid plan. Even after executing recovery behaviors.");
}
else if(recovery_trigger_ == OSCILLATION_R){
ROS_ERROR("Aborting because the robot appears to be oscillating over and over. Even after executing all recovery behaviors");
as_->setAborted(move_base_msgs::MoveBaseResult(), "Robot is oscillating. Even after executing recovery behaviors.");
}
resetState();
return true;
}
break;
default:
ROS_ERROR("This case should never be reached, something is wrong, aborting");
resetState();
//disable the planner thread
boost::unique_lock<boost::recursive_mutex> lock(planner_mutex_);
runPlanner_ = false;
lock.unlock();
as_->setAborted(move_base_msgs::MoveBaseResult(), "Reached a case that should not be hit in move_base. This is a bug, please report it.");
return true;
}
 
//we aren't done yet
return false;
}




文章转载自慢慢的回味,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论