
更多精彩内容,请访问小程序:
251.我们建立一个5000个特征, 100万数据的机器学习模型. 我们怎么有效地应对这样的大数据训练 : (F)
A. 我们随机抽取一些样本, 在这些少量样本之上训练
B. 我们可以试用在线机器学习算法
C. 我们应用PCA算法降维, 减少特征数
D. B 和 C
E. A 和 B
F. 以上所有
答案: (F)
252.我们想要减少数据集中的特征数, 即降维. 选择以下适合的方案 :(D)
1.使用前向特征选择方法
2.使用后向特征排除方法
3.我们先把所有特征都使用, 去训练一个模型, 得到测试集上的表现. 然后我们去掉一个特征, 再去训练, 用交叉验证看看测试集上的表现. 如果表现比原来还要好, 我们可以去除这个特征
4.查看相关性表, 去除相关性最高的一些特征
A. 1 和 2
B. 2, 3和4
C. 1, 2和4
D. All
答案: (D)
1.前向特征选择方法和后向特征排除方法是我们特征选择的常用方法
2.如果前向特征选择方法和后向特征排除方法在大数据上不适用, 可以用这里第三种方法
3.用相关性的度量去删除多余特征, 也是一个好方法
所以D是正确的。
253.对于随机森林和GradientBoosting Trees, 下面说法正确的是:(A)
1.在随机森林的单个树中, 树和树之间是有依赖的, 而GradientBoosting Trees中的单个树之间是没有依赖的
2.这两个模型都使用随机特征子集, 来生成许多单个的树
3.我们可以并行地生成GradientBoosting Trees单个树, 因为它们之间是没有依赖的, GradientBoosting Trees训练模型的表现总是比随机森林好
A. 2
B. 1 and 2
C. 1, 3 and 4
D. 2 and 4
答案: (A)
1.随机森林是基于bagging的, 而Gradient Boosting trees是基于boosting的, 所有说反了,在随机森林的单个树中, 树和树之间是没有依赖的, 而GradientBoosting Trees中的单个树之间是有依赖关系。
2.这两个模型都使用随机特征子集, 来生成许多单个的树。
所以A是正确的。
254.对于PCA(主成分分析)转化过的特征 , 朴素贝叶斯的”不依赖假设”总是成立, 因为所有主要成分是正交的, 这个说法是 :(B)
A. 正确的
B. 错误的
答案: (B)
这个说法是错误的。首先,“不依赖”和“不相关”是两回事;其次, 转化过的特征, 也可能是相关的。
255.对于PCA说法正确的是 :(A)
1.我们必须在使用PCA前规范化数据
2.我们应该选择使得模型有最大variance的主成分
3.我们应该选择使得模型有最小variance的主成分
4.我们可以使用PCA在低维度上做数据可视化
A. 1, 2 and 4
B. 2 and 4
C. 3 and 4
D. 1 and 3
E. 1, 3 and 4
答案: (A)
1)PCA对数据尺度很敏感, 打个比方, 如果单位是从km变为cm, 这样的数据尺度对PCA最后的结果可能很有影响(从不怎么重要的成分变为很重要的成分)
2)我们总是应该选择使得模型有最大variance的主成分
3)有时在低维度上左图是需要PCA的降维帮助的
256.对于下图, 最好的主成分选择是多少 ?(B)

A. 7
B. 30
C. 35
D. 不确定
答案: (B)
主成分选择使variance越大越好, 在这个前提下, 主成分越少越好。
257.数据科学家可能会同时使用多个算法(模型)进行预测, 并且最后把这些算法的结果集成起来进行最后的预测(集成学习),以下对集成学习说法正确的是 :(B)
A. 单个模型之间有高相关性
B. 单个模型之间有低相关性
C. 在集成学习中使用“平均权重”而不是“投票”会比较好
D. 单个模型都是用的一个算法
答案: (B)
258.在有监督学习中, 我们如何使用聚类方法?(B)
1.我们可以先创建聚类类别, 然后在每个类别上用监督学习分别进行学习
2.我们可以使用聚类“类别id”作为一个新的特征项, 然后再用监督学习分别进行学习
3.在进行监督学习之前, 我们不能新建聚类类别
4.我们不可以使用聚类“类别id”作为一个新的特征项, 然后再用监督学习分别进行学习
A. 2 和 4
B. 1 和 2
C. 3 和 4
D. 1 和 3
答案: (B)
我们可以为每个聚类构建不同的模型, 提高预测准确率;“类别id”作为一个特征项去训练, 可以有效地总结了数据特征。所以B是正确的。
259.以下说法正确的是 :(C)
1.一个机器学习模型,如果有较高准确率,总是说明这个分类器是好的
2.如果增加模型复杂度, 那么模型的测试错误率总是会降低
3.如果增加模型复杂度, 那么模型的训练错误率总是会降低
4.我们不可以使用聚类“类别id”作为一个新的特征项, 然后再用监督学习分别进行学习
A. 1
B. 2
C. 3
D. 1 and 3
答案: (C)
考的是过拟合和欠拟合的问题。
260.对应GradientBoosting tree算法, 以下说法正确的是 :(C)
1.当增加最小样本分裂个数,我们可以抵制过拟合
2.当增加最小样本分裂个数,会导致过拟合
3.当我们减少训练单个学习器的样本个数,我们可以降低variance
4.当我们减少训练单个学习器的样本个数,我们可以降低bias
A. 2 和 4
B. 2 和 3
C. 1 和 3
D. 1 和 4
答案: (C)
最小样本分裂个数是用来控制“过拟合”参数。太高的值会导致“欠拟合”,这个参数应该用交叉验证来调节。第二点是靠bias和variance概念的。
261.以下哪个图是KNN算法的训练边界 ? (B)

A) B
B) A
C) D
D) C
E) 都不是
答案:(B)
KNN算法肯定不是线性的边界,所以直的边界就不用考虑了。另外这个算法是看周围最近的k个样本的分类用以确定分类,所以边界一定是坑坑洼洼的。
262.如果一个训练好的模型在测试集上有100%的准确率, 这是不是意味着在一个新的数据集上,也会有同样好的表现?(B)
A. 是的,这说明这个模型的范化能力已经足以支持新的数据集合了
B. 不对,依然后其他因素模型没有考虑到,比如噪音数据
答案:(B)
没有一个模型是可以总是适应新的数据的。我们不可能达到100%的准确率。
263.下面的交叉验证方法 :(B)
i. 有放回的Bootstrap方法
ii. 留一个测试样本的交叉验证
iii. 5折交叉验证
iv. 重复两次的5折交叉验证
当样本是1000时,下面执行时间的顺序,正确的是:
A. i > ii > iii > iv
B. ii > iv > iii > i
C. iv > i > ii > iii
D. ii > iii > iv > i
答案:(B)
Bootstrap方法是传统的随机抽样,验证一次的验证方法,只需要训练1个模型,所以时间最少。
留一个测试样本的交叉验证,需要n次训练过程(n是样本个数),这里,需要训练1000个模型。
5折交叉验证需要训练5个模型。
重复两次的5折交叉验证,需要训练10个模型。
264.变量选择是用来选择最好的判别器子集, 如果要考虑模型效率,我们应该做哪些变量选择的考虑? :(C)
1.多个变量其实有相同的用处
2.变量对于模型的解释有多大作用
3.特征携带的信息
4.交叉验证
A. 1 和 4
B. 1, 2 和 3
C. 1,3 和 4
D. 以上所有
答案:(C)
注意,这题的题眼是考虑模型效率,所以不要考虑选项B
265.对于线性回归模型,包括附加变量在内,以下的可能正确的是 :(D)
1.R-Squared 和 Adjusted R-squared都是递增的
2.R-Squared 是常量的,Adjusted R-squared是递增的
3.R-Squared 是递减的, Adjusted R-squared 也是递减的
4.R-Squared 是递减的, Adjusted R-squared是递增的
A. 1 和 2
B. 1 和 3
C. 2 和 4
D. 以上都不是
答案:(D)
R-Squared不能决定系数估计和预测偏差,这就是为什么我们要估计残差图。但是,R-Squared有R-Squared和predicted R-Squared所没有的问题。每次为模型加入预测器,R-Squared递增或者不变。
266.对于下面三个模型的训练情况, 下面说法正确的是 :(C)

1.第一张图的训练错误与其余两张图相比,是最大的
2.最后一张图的训练效果最好,因为训练错误最小
3.第二张图比第一和第三张图鲁棒性更强,是三个里面表现最好的模型
4.第三张图相对前两张图过拟合了
5.三个图表现一样,因为我们还没有测试数据集
A. 1 和 3
B. 1 和 3
C. 1, 3 和 4
D. 5
267.对于线性回归,我们应该有以下哪些假设?(D)
1.找到利群点很重要, 因为线性回归对利群点很敏感
2.线性回归要求所有变量必须符合正态分布
3.线性回归假设数据没有多重线性相关性
A. 1 和 2
B. 2 和 3
C. 1,2 和 3
D. 以上都不是
答案:(D)
利群点要着重考虑,第一点是对的。
不是必须的,当然如果是正态分布,训练效果会更好。
有少量的多重线性相关性是可以的,但是我们要尽量避免。
268.我们注意变量间的相关性。在相关矩阵中搜索相关系数时, 如果我们发现3对变量的相关系数是(Var1 和Var2, Var2和Var3, Var3和Var1)是-0.98, 0.45, 1.23 . 我们可以得出什么结论?(C)
1.Var1和Var2是非常相关的
2.因为Var和Var2是非常相关的, 我们可以去除其中一个
3.Var3和Var1的1.23相关系数是不可能的
A. 1 and 3
B. 1 and 2
C. 1,2 and 3
D. 1
答案:(C)
Var1和Var2的相关系数是负的,所以这是多重线性相关,我们可以考虑去除其中一个。
一 般的,如果相关系数大于0.7或者小于-0.7,是高相关的。
相关系数的范围应该是[-1,1]。
269.如果在一个高度非线性并且复杂的一些变量中“一个树模型可比一般的回归模型效果更好”是(A)
A. 对的
B. 错的
答案:(A)
270.对于维度极低的特征,选择线性还是非线性分类器?
答案:非线性分类器,低维空间可能很多特征都跑到一起了,导致线性不可分。
1.如果特征的数量很大,跟样本数量差不多,这时候选用LR或者是Linear Kernel的SVM。
2.如果特征的数量比较小,样本数量一般,不算大也不算小,选用SVM+Gaussian Kernel。
3.如果特征的数量比较小,而样本数量很多,需要手工添加一些特征变成第一种情况。
271.SVM、LR、决策树的对比。
模型复杂度:SVM支持核函数,可处理线性非线性问题;LR模型简单,训练速度快,适合处理线性问题;决策树容易过拟合,需要进行剪枝。
损失函数:SVM hinge loss; LR L2正则化; Adaboost 指数损失。
数据敏感度:SVM添加容忍度对outlier不敏感,只关心支持向量,且需要先做归一化; LR对远点敏感。
数据量:数据量大就用LR,数据量小且特征少就用SVM非线性核。
272.什么是ill-condition病态问题?
训练完的模型,测试样本稍作修改就会得到差别很大的结果,就是病态问题,模型对未知数据的预测能力很差,即泛化误差大。
273.简述KNN最近邻分类算法的过程?
1.计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等);
2.对上面所有的距离值进行排序;
3.选前k个最小距离的样本;
4.根据这k个样本的标签进行投票,得到最后的分类类别;
274.常用的聚类划分方式有哪些?列举代表算法。
1.基于划分的聚类:K-means,k-medoids,CLARANS。
2.基于层次的聚类:AGNES(自底向上),DIANA(自上向下)。
3.基于密度的聚类:DBSACN,OPTICS,BIRCH(CF-Tree),CURE。
4.基于网格的方法:STING,WaveCluster。
5.基于模型的聚类:EM,SOM,COBWEB。
275.下面对集成学习模型中的弱学习者描述错误的是?(C)
A. 他们经常不会过拟合
B. 他们通常带有高偏差,所以其并不能解决复杂学习问题
C. 他们通常会过拟合
答案:(C)
弱学习者是问题的特定部分。所以他们通常不会过拟合,这也就意味着弱学习者通常拥有低方差和高偏差。
276.下面哪个/些选项对 K 折交叉验证的描述是正确的?(D)
1.增大 K 将导致交叉验证结果时需要更多的时间
2.更大的 K 值相比于小 K 值将对交叉验证结构有更高的信心
3.如果 K=N,那么其称为留一交叉验证,其中 N 为验证集中的样本数量
A. 1 和 2
B. 2 和 3
C. 1 和 3
D. 1、2 和 3
答案:(D)
大 K 值意味着对过高估计真实预期误差(训练的折数将更接近于整个验证集样本数)拥有更小的偏差和更多的运行时间(并随着越来越接近极限情况:留一交叉验证)。我们同样在选择 K 值时需要考虑 K 折准确度和方差间的均衡。
277.最出名的降维算法是 PAC 和 t-SNE。将这两个算法分别应用到数据「X」上,并得到数据集「X_projected_PCA」,「X_projected_tSNE」。下面哪一项对「X_projected_PCA」和「X_projected_tSNE」的描述是正确的?(B)
A. X_projected_PCA 在最近邻空间能得到解释
B. X_projected_tSNE 在最近邻空间能得到解释
C. 两个都在最近邻空间能得到解释
D. 两个都不能在最近邻空间得到解释
答案:(B)
t-SNE 算法考虑最近邻点而减少数据维度。所以在使用 t-SNE 之后,所降的维可以在最近邻空间得到解释。但 PCA 不能。
278.给定三个变量 X,Y,Z。(X, Y)、(Y, Z) 和 (X, Z) 的 Pearson 相关性系数分别为 C1、C2 和 C3。现在 X 的所有值加 2(即 X+2),Y 的全部值减 2(即 Y-2),Z 保持不变。那么运算之后的 (X, Y)、(Y, Z) 和 (X, Z) 相关性系数分别为 D1、D2 和 D3。现在试问 D1、D2、D3 和 C1、C2、C3 之间的关系是什么?(E)
A. D1= C1, D2 < C2, D3 > C3
B. D1 = C1, D2 > C2, D3 > C3
C. D1 = C1, D2 > C2, D3 < C3
D. D1 = C1, D2 < C2, D3 < C3
E. D1 = C1, D2 = C2, D3 = C3
答案:(E)
特征之间的相关性系数不会因为特征加或减去一个数而改变。
279.为了得到和 SVD 一样的投射(projection),你需要在 PCA 中怎样做?(A)
A. 将数据转换成零均值
B. 将数据转换成零中位数
C. 无法做到
答案:(A)
当数据有一个 0 均值向量时,PCA 有与 SVD 一样的投射,否则在使用 SVD 之前,你必须将数据均值归 0。
280.假设我们有一个数据集,在一个深度为 6 的决策树的帮助下,它可以使用 100% 的精确度被训练。现在考虑一下两点,并基于这两点选择正确的选项。(A)
注意:所有其他超参数是相同的,所有其他因子不受影响。
1.深度为 4 时将有高偏差和低方差
2.深度为 4 时将有低偏差和低方差
A. 只有 1
B. 只有 2
C. 1 和 2
D. 没有一个
答案:(A)
如果在这样的数据中你拟合深度为 4 的决策树,这意味着其更有可能与数据欠拟合。因此,在欠拟合的情况下,你将获得高偏差和低方差。

您的关注和转发,是我们不断努力的原动力!




