暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

Hive分析窗口函数(一) SUM,AVG,MIN,MAX

漫谈大数据与数据分析 2020-04-15
319

Hive中提供了很多分析函数,用于完成负责的统计分析。

现在给出SUM、AVG、MIN、MAX的示例

用于实现分组内所有和连续累积的统计。

数据准备

/tmp/a.txt数据文件内容如下:

cookie1,2015-04-10,1

cookie1,2015-04-11,5

cookie1,2015-04-12,7

cookie1,2015-04-13,3

cookie1,2015-04-14,2

cookie1,2015-04-15,4

cookie1,2015-04-16,4


  1. hive> CREATE TABLE xxm_t1 (

  2. cookieid string,

  3. createtime string, --day

  4. pv INT

  5. ) ROW FORMAT DELIMITED

  6. FIELDS TERMINATED BY ',';

  7.  

  8. hive> DESC xxm_t1;

  9. cookieid STRING

  10. createtime STRING

  11. pv INT

  12.  

  13. hive> LOAD DATA INPATH '/tmp/a.txt' INTO TABLE xxm_t1;


  14. hive> select * from xxm_t1;

  15. OK

  16. cookie1 2015-04-10 1

  17. cookie1 2015-04-11 5

  18. cookie1 2015-04-12 7

  19. cookie1 2015-04-13 3

  20. cookie1 2015-04-14 2

  21. cookie1 2015-04-15 4

  22. cookie1 2015-04-16 4

SUM — 结果和ORDER BY相关,默认为升序

SELECT cookieid,
createtime,
pv,
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
SUM(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --当前行+往前3行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --当前行+往前3行+往后1行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---当前行+往后所有行
FROM xxm_t1;


cookieid  createtime    pv      pv1     pv2     pv3     pv4     pv5  pv6
-----------------------------------------------------------------------------
cookie1 2015-04-10 1 1 1 26 1 6 26
cookie1 2015-04-11 5 6 6 26 6 13 25
cookie1 2015-04-12 7 13 13 26 13 16 20
cookie1 2015-04-13 3 16 16 26 16 18 13
cookie1 2015-04-14 2 18 18 26 17 21 10
cookie1 2015-04-15 4 22 22 26 16 20 8
cookie1 2015-04-16 4 26 26 26 13 13 4
Time taken: 2.54 seconds, Fetched 7 row(s)
pv1: 分组内从起点到当前行的pv累积。
pv2: ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW同pv1
pv3: 分组内(cookie1)所有的pv累加
pv4: ROWS BETWEEN 3 PRECEDING AND CURRENT ROW分组内当前行+往前3行
pv5: ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING分组内当前行+往前3行+往后1行
pv6: ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING分组内当前行+往后所有行
如果不指定ROWS BETWEEN,默认为从起点到当前行;
如果不指定ORDER BY,则将分组内所有值累加;
ROWS BETWEEN含义,也叫做WINDOW子句
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:起点,UNBOUNDED PRECEDING 表示前面的起点, UNBOUNDED FOLLOWING表示到后面的终点

AVG,MIN,MAX和SUM用法一样。
SELECT
cookieid,
createtime,
pv,
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
AVG(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --当前行+往前3行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --当前行+往前3行+往后1行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---当前行+往后所有行
FROM xxm_t1;


cookieid createtime pv pv1 pv2 pv3 pv4 pv5 pv6
-----------------------------------------------------------------------------
cookie1 2015-04-10 1 1.0 1.0 3.7142857142857144 1.0 3.0 3.7142857142857144
cookie1 2015-04-11 5 3.0 3.0 3.7142857142857144 3.0 4.333333333333333 4.166666666666667
cookie1 2015-04-12 7 4.333333333333333 4.333333333333333 3.7142857142857144 4.333333333333333 4.0 4.0
cookie1 2015-04-13 3 4.0 4.0 3.7142857142857144 4.0 3.6 3.25
cookie1 2015-04-14 2 3.6 3.6 3.7142857142857144 4.25 4.2 3.3333333333333335
cookie1 2015-04-15 4 3.6666666666666665 3.6666666666666665 3.7142857142857144 4.0 4.0 4.0
cookie1 2015-04-16 4 3.7142857142857144 3.7142857142857144 3.7142857142857144 3.25 3.25 4.0
Time taken: 2.619 seconds, Fetched 7 row(s)
--MIN
SELECT cookieid,
createtime,
pv,
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
MIN(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --当前行+往前3行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --当前行+往前3行+往后1行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---当前行+往后所有行
FROM xxm_t1;

cookieid createtime pv pv1 pv2 pv3 pv4 pv5 pv6
-----------------------------------------------------------------------------
cookie1 2015-04-10 1 1 1 1 1 1 1
cookie1 2015-04-11 5 1 1 1 1 1 2
cookie1 2015-04-12 7 1 1 1 1 1 2
cookie1 2015-04-13 3 1 1 1 1 1 2
cookie1 2015-04-14 2 1 1 1 2 2 2
cookie1 2015-04-15 4 1 1 1 2 2 4
cookie1 2015-04-16 4 1 1 1 2 2 4
Time taken: 1.703 seconds, Fetched 7 row(s)
----MAX
SELECT cookieid,
createtime,
pv,
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
MAX(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --当前行+往前3行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --当前行+往前3行+往后1行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 ---当前行+往后所有行
FROM xxm_t1;

cookieid createtime pv pv1 pv2 pv3 pv4 pv5 pv6
-----------------------------------------------------------------------------
cookie1 2015-04-10 1 1 1 7 1 5 7
cookie1 2015-04-11 5 5 5 7 5 7 7
cookie1 2015-04-12 7 7 7 7 7 7 7
cookie1 2015-04-13 3 7 7 7 7 7 4
cookie1 2015-04-14 2 7 7 7 7 7 4
cookie1 2015-04-15 4 7 7 7 7 7 4
cookie1 2015-04-16 4 7 7 7 4 4 4
Time taken: 1.492 seconds, Fetched 7 row(s)




文章转载自漫谈大数据与数据分析,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论