暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

基于Yolov8网络进行目标检测(三)-训练自己的数据集

追梦IT人 2023-09-18
1223

前一篇文章详细了讲解了如何构造自己的数据集,以及如何修改模型配置文件和数据集配置文件,本篇主要是如何训练自己的数据集,并且如何验证。

VOC2012数据集下载地址:

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

coco全量数据集下载地址:

http://images.cocodtaset.org/annotations/annotations_trainval2017.zip

本篇以以下图片为预测对象。

一、对coco128数据集进行训练,coco128.yaml中已包括下载脚本,选择yolov8n轻量模型,开始训练

  1. yolo detect train data=coco128.yaml model=model\yolov8n.pt epochs=100 imgsz=640

训练的相关截图,第一部分是展开后的命令行执行参数和网络结构

第二部分是每轮训练过程

第三部分是对各类标签的验证情况

二、对VOC2012数据集进行训练,使用我们定义的两个yaml配置文件,选择yolov8n轻量模型,开始训练

  1. yolo detect train data=E:\JetBrains\PycharmProject\Yolov8Project\venv\Lib\site-packages\ultralytics\cfg\datasets\VOC2012.yaml model=E:\JetBrains\PycharmProject\Yolov8Project\venv\Lib\site-packages\ultralytics\cfg\models\v8\VOC2012.yaml pretrained=model\yolov8n.pt epochs=10 imgsz=640

以下为运行日志,和上述一样

  1. (venv) PS E:\JetBrains\PycharmProject\Yolov8Project> yolo detect train data=E:\JetBrains\PycharmProject\Yolov8Project\venv\Lib\site-packages\ultralytics\cfg\datasets\VOC2012.yaml model=E:\JetBrains\PycharmProject\Yolov8Project\venv\

  2. Lib\site-packages\ultralytics\cfg\models\v8\VOC2012.yaml pretrained=model\yolov8n.pt epochs=10 imgsz=640

  3. WARNING no model scale passed. Assuming scale='n'.


  4. from n params module arguments

  5. 0-11464 ultralytics.nn.modules.conv.Conv[3, 16, 3, 2]

  6. 1-114672 ultralytics.nn.modules.conv.Conv[16, 32, 3, 2]

  7. 2-117360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]

  8. 3-1118560 ultralytics.nn.modules.conv.Conv[32, 64, 3, 2]

  9. 4-1249664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]

  10. 5-1173984 ultralytics.nn.modules.conv.Conv[64, 128, 3, 2]

  11. 6-12197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]

  12. 7-11295424 ultralytics.nn.modules.conv.Conv[128, 256, 3, 2]

  13. 8-11460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]

  14. 9-11164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]

  15. 10-110 torch.nn.modules.upsampling.Upsample[None, 2, 'nearest']

  16. 11[-1, 6] 10 ultralytics.nn.modules.conv.Concat[1]

  17. 12-11148224 ultralytics.nn.modules.block.C2f [384, 128, 1]

  18. 13-110 torch.nn.modules.upsampling.Upsample[None, 2, 'nearest']

  19. 14[-1, 4] 10 ultralytics.nn.modules.conv.Concat[1]

  20. 15-1137248 ultralytics.nn.modules.block.C2f [192, 64, 1]

  21. 16-1136992 ultralytics.nn.modules.conv.Conv[64, 64, 3, 2]

  22. 17[-1, 12] 10 ultralytics.nn.modules.conv.Concat[1]

  23. 18-11123648 ultralytics.nn.modules.block.C2f [192, 128, 1]

  24. 19-11147712 ultralytics.nn.modules.conv.Conv[128, 128, 3, 2]

  25. 20[-1, 9] 10 ultralytics.nn.modules.conv.Concat[1]

  26. 21-11493056 ultralytics.nn.modules.block.C2f [384, 256, 1]

  27. 22[15, 18, 21] 1755212 ultralytics.nn.modules.head.Detect[20, [64, 128, 256]]

  28. VOC2012 summary: 225 layers, 3014748 parameters, 3014732 gradients


  29. Transferred319/355 items from pretrained weights

  30. UltralyticsYOLOv8.0.178Python-3.10.11 torch-2.0.1+cu118 CUDA:0(Quadro P2200, 5120MiB)

  31. engine\trainer: task=detect, mode=train, model=E:\JetBrains\PycharmProject\Yolov8Project\venv\Lib\site-packages\ultralytics\cfg\models\v8\VOC2012.yaml, data=E:\JetBrains\PycharmProject\Yolov8Project\venv\Lib\site-packages\ultralytic

  32. s\cfg\datasets\VOC2012.yaml, epochs=10, patience=50, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=None, exist_ok=False, pretrained=model\yolov8n.pt, optimizer=auto, verbose=

  33. True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save

  34. _json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, stream_bu

  35. ffer=False, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, w

  36. orkspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hs

  37. v_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train8

  38. WARNING no model scale passed. Assuming scale='n'.


  39. from n params module arguments

  40. 0-11464 ultralytics.nn.modules.conv.Conv[3, 16, 3, 2]

  41. 1-114672 ultralytics.nn.modules.conv.Conv[16, 32, 3, 2]

  42. 2-117360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]

  43. train: Scanning E:\JetBrains\PyCharm Project\ObjectDetectionProject\datasets\VOC2012\labels\train.cache... 17125 images, 195 backgrounds, 0 corrupt: 100%|██████████| 17125/17125[00:00<?, ?it/s]

  44. val: Scanning E:\JetBrains\PyCharm Project\ObjectDetectionProject\datasets\VOC2012\labels\train.cache... 17125 images, 195 backgrounds, 0 corrupt: 100%|██████████| 17125/17125[00:00<?, ?it/s]

  45. Plotting labels to runs\detect\train8\labels.jpg...

  46. optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically...

  47. optimizer: AdamW(lr=0.000417, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)

  48. Image sizes 640 train, 640 val

  49. Using8 dataloader workers

  50. Logging results to runs\detect\train8

  51. Starting training for10 epochs...

  52. Closing dataloader mosaic


  53. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize

  54. 1/102.41G0.91562.5721.24410640: 100%|██████████| 1071/1071[07:06<00:00, 2.51it/s]

  55. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:44<00:00, 3.26it/s]

  56. all 17125349130.6210.5720.6050.436


  57. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize

  58. 2/102.53G1.0061.8691.31110640: 100%|██████████| 1071/1071[07:06<00:00, 2.51it/s]

  59. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:40<00:00, 3.35it/s]

  60. all 17125349130.6440.540.5920.414


  61. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize

  62. 3/102.49G1.0381.6611.3449640: 100%|██████████| 1071/1071[07:02<00:00, 2.54it/s]

  63. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:44<00:00, 3.25it/s]

  64. all 17125349130.6160.5620.5940.419


  65. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize

  66. 4/102.47G1.0211.4931.33112640: 100%|██████████| 1071/1071[07:00<00:00, 2.55it/s]

  67. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:42<00:00, 3.29it/s]

  68. all 17125349130.6510.5880.6380.457


  69. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize

  70. 5/102.48G1.0051.4031.3184640: 100%|██████████| 1071/1071[07:00<00:00, 2.54it/s]

  71. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:41<00:00, 3.31it/s]

  72. all 17125349130.6730.5920.650.467


  73. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize

  74. 6/102.46G0.96821.2991.299640: 100%|██████████| 1071/1071[06:55<00:00, 2.58it/s]

  75. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:29<00:00, 3.58it/s]

  76. all 17125349130.7090.6230.6930.511


  77. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize

  78. 7/102.48G0.9321.2091.2618640: 100%|██████████| 1071/1071[06:57<00:00, 2.56it/s]

  79. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:39<00:00, 3.37it/s]

  80. all 17125349130.7210.6610.7220.542


  81. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize

  82. 8/102.49G0.89611.1271.2329640: 100%|██████████| 1071/1071[07:00<00:00, 2.55it/s]

  83. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:40<00:00, 3.35it/s]

  84. all 17125349130.7350.670.7460.567


  85. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize

  86. 9/102.47G0.85651.0581.2028640: 100%|██████████| 1071/1071[06:58<00:00, 2.56it/s]

  87. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:29<00:00, 3.59it/s]

  88. all 17125349130.7660.6960.7730.597


  89. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize

  90. 10/102.45G0.82780.98891.17911640: 100%|██████████| 1071/1071[06:55<00:00, 2.58it/s]

  91. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:28<00:00, 3.61it/s]

  92. all 17125349130.7770.7180.7950.621


  93. 10 epochs completed in 1.620 hours.

  94. Optimizer stripped from runs\detect\train8\weights\last.pt, 6.2MB

  95. Optimizer stripped from runs\detect\train8\weights\best.pt, 6.2MB


  96. Validating runs\detect\train8\weights\best.pt...

  97. UltralyticsYOLOv8.0.178Python-3.10.11 torch-2.0.1+cu118 CUDA:0(Quadro P2200, 5120MiB)

  98. VOC2012 summary (fused): 168 layers, 3009548 parameters, 0 gradients

  99. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:31<00:00, 3.54it/s]

  100. all 17125349130.7770.7180.7950.621

  101. aeroplane 171259110.9240.8130.9020.731

  102. bicycle 171257530.7650.5780.7370.582

  103. bird 1712511690.8940.7570.8620.651

  104. boat 171259020.7560.6410.7260.506

  105. bottle 1712513290.7230.5940.6790.489

  106. bus 171256380.8930.8180.8940.775

  107. car 1712521050.7860.690.7990.618

  108. cat 1712512660.8520.880.9210.763

  109. chair 1712524430.7060.5610.660.482

  110. cow 171256420.7820.8040.8580.673

  111. diningtable 171256350.5910.7180.690.517

  112. dog 1712515710.8460.7950.8830.727

  113. horse 171257600.6730.6340.740.61

  114. person 17125157530.790.8390.8750.691

  115. pottedplant 1712510550.7010.5250.6140.404

  116. sheep 171258780.7750.8230.8580.665

  117. sofa 171255920.7030.6440.730.592

  118. train 171256720.8820.8440.9140.735

  119. tvmonitor 171258390.730.6770.7650.595

  120. Speed: 0.2ms preprocess, 3.9ms inference, 0.0ms loss, 0.7ms postprocess per image

  121. Results saved to runs\detect\train8

  122. Learn more at https://docs.ultralytics.com/modes/train

  123. (venv) PS E:\JetBrains\PycharmProject\Yolov8Project>

三、将run\detect\trainx\best.pt拷贝到model目录下,并改为相关可辨识的模型名称

四、执行测试代码,验证一下几个训练模型的预测结果

  1. from ultralytics import YOLO

  2. from PIL importImage

  3. filepath='test\eat.png'


  4. # 直接加载预训练模型

  5. model = YOLO('model\yolov8x.pt')

  6. # Run inference on 'bus.jpg'

  7. results = model(filepath) # results list

  8. # Show the results

  9. for r in results:

  10. im_array = r.plot() # plot a BGR numpy array of predictions

  11. im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image

  12. im.show() # show image

  13. im.save('yolov8x.jpg') # save image


  14. # 直接加载预训练模型

  15. model = YOLO('model\yolov8n.pt')

  16. # Run inference on 'bus.jpg'

  17. results = model(filepath) # results list

  18. # Show the results

  19. for r in results:

  20. im_array = r.plot() # plot a BGR numpy array of predictions

  21. im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image

  22. im.show() # show image

  23. im.save('yolov8n.jpg') # save image


  24. # 直接加载预训练模型

  25. model = YOLO('model\coco128.pt')

  26. # Run inference on 'bus.jpg'

  27. results = model(filepath) # results list

  28. # Show the results

  29. for r in results:

  30. im_array = r.plot() # plot a BGR numpy array of predictions

  31. im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image

  32. im.show() # show image

  33. im.save('coco128.jpg') # save image


  34. # 直接加载预训练模型

  35. model = YOLO('model\VOC2012.pt')

  36. # Run inference on 'bus.jpg'

  37. results = model(filepath) # results list

  38. # Show the results

  39. for r in results:

  40. im_array = r.plot() # plot a BGR numpy array of predictions

  41. im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image

  42. im.show() # show image

  43. im.save('VOC2012.jpg') # save image

基于yolov8x.pt预训练模型预测情况如下:

基于yolov8n.pt预训练模型预测情况如下:

基于coco128数据集训练的模型预测情况如下:

基于VOC2012数据集训练的模型预测情况如下:

结论:

1、基于yolov8x.pt预训练模型预测的最全最准,但也最慢。

2、基于yolov8n.pt预训练模型预测和yolov8x在概率上有些不一致,80类中的极少数类别识别不出来,毕竟网络模型参数相差太多。

3、基于coco128数据集训练的模型预测类别比yolov8n少,毕竟只有128张训练样本,估计会缺失一些标签。

4、基于VOC2012数据集训练的模型预测类别最少,毕竟只有20种类别,和coco数据集有交叉也有不同,VOC2012数据集没有水果样本,所以无法识别出水果。

基本上后边就可以愉快的训练各种目标检测了,但是数据集和标注数据才是比较耗人的。

最后欢迎关注公众号:python与大数据分析


文章转载自追梦IT人,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论