Apache Hudi(简称:Hudi)能在hadoop兼容的存储之上存储大量数据,同时它还提供两种原语,使得除了经典的批处理之外,还可以在数据湖上进行流处理。这两种原语分别是:
- Update/Delete记录:Hudi使用细粒度的文件/记录级别索引来支持Update/Delete记录,同时还提供写操作的事务保证。查询会处理最后一个提交的快照,并基于此输出结果。
- 变更流:Hudi对获取数据变更提供了一流的支持:可以从给定的时间点获取给定表中已updated/inserted/deleted的所有记录的增量流,并解锁新的查询姿势(类别)。
这些原语紧密结合,解锁了基于DFS抽象的流/增量处理能力。如果您熟悉流处理,那么这和从kafka主题消费事件,然后使用状态存储逐步累加中间结果类似。这在架构上会有以下几点优势:1)效率的提升:摄取数据通常需要处理更新、删除以及强制唯一键约束。然而,由于缺乏像Hudi这样能对这些功能提供标准支持的系统,数据工程师们通常会采用大批量的作业来重新处理一整天的事件,或者每次运行都重新加载整个上游数据库,从而导致大量的计算资源浪费。由于Hudi支持记录级更新,它通过只处理有变更的记录并且只重写表中已更新/删除的部分,而不是重写整个表分区甚至整个表,为这些操作带来一个数量级的性能提升。2)更快的ETL/派生Pipelines:从外部系统摄入数据后,下一步需要使用Apache Spark/Apache Hive或者任何其他数据处理框架来ETL这些数据用于诸如数据仓库、机器学习或者仅仅是数据分析等一些应用场景。通常,这些处理再次依赖以代码或SQL表示的批处理作业,这些作业将批量处理所有输入数据并重新计算所有输出结果。通过使用增量查询而不是快照查询来查询一个或多个输入表,可以大大加速此类数据管道,从而再次像上面一样仅处理来自上游表的增量更改,然后upsert或者delete目标派生表。3)新鲜数据的获取:减少资源还能获取性能上的提升并不是常见的事。毕竟我们通常会使用更多的资源(例如内存)来提升性能(例如查询延迟)。Hudi通过从根本上摆脱数据集的传统管理方式,将批量处理增量化带来了一个附加的好处:与以前的数据湖相比,pipeline运行的时间会更短,数据交付会更快。4)统一存储:基于以上三个优点,在现有数据湖之上进行更快速、更轻量的处理意味着仅出于访问近实时数据的目的时不再需要专门的存储或数据集市。




