暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

GaussDB数据库SQL系列-数据去重(下)

3246 2023-11-03
320

3、制定去重规则

1)多选一

• 随机:根据去重规则,随机保留一条数据。

• 优先级:根据去重规则 + 业务逻辑,保留优先需要的一条数据。例如优先保留“是否有房、是否有车”。


2)多合一

• 将重复数据合并成一条数据,合并规则根据业务逻辑确定。

4、创建测试数据(GaussDB)

客户信息字段主要包含“姓名、性别、出生年月日、证件类型、证件号、来源、是否有车、是否有房、婚姻状态、手机号、……”等信息。

--创建客户信息表

CREATE TABLE customer(

name VARCHAR(20)

,sex INT

,birthday VARCHAR(10)

,ID_type INT

,ID_number VARCHAR(20)

,source VARCHAR(10)

,IS_car INT

,IS_house INT

,marital_status INT

,tel_number VARCHAR(15)

);
--插入测试数据

INSERT INTO customer VALUES('张三','1','1988-01-01','1','61010019880101****','寿险','1','1','1','');

INSERT INTO customer VALUES('张三','1','1988-01-01','1','61010019880101****','车险','1','0','1','');

INSERT INTO customer VALUES('张三','1','1988-01-01','1','61010019880101****','','','','','186****0701');

INSERT INTO customer VALUES('李四','1','1989-01-02','1','61010019890102****','寿险','1','1','1','');

INSERT INTO customer VALUES('李四','1','1989-01-02','1','61010019890102****','车险','1','0','1','');

INSERT INTO customer VALUES('李四','1','1989-01-02','1','61010019890102****','','','','','186****0702');
--查看结果

SELECT * FROM customer;

Tip: 部分为INT类型的字段值取字典表的值,此处省。

5、编写去重方法(GaussDB)

以下示例中不包含过多的数据清洗、数据脱敏、业务逻辑等的处理,这些步骤均建议进行“前置”处理。本次示例重点描述去重的过程。


1随机保留根据业务逻辑,随机保留一条记录。

SELECT *

FROM (SELECT *

,ROW_NUMBER() OVER (PARTITION BY name,id_type,id_number ) as row_num

FROM customer)

WHERE row_num = 1;

说明

• ROW_NUMBER(): 从第一行开始,依次为每一行分配一个唯一且连续的编号。

• PARTITION BY col1[, col2...]: 指定分区的列,例如去重的键“姓名、证件类型、证件号码”。

• WHERE row_num = 1:取ROW_NUMBER()生成的编号1。


2)优先保留根据业务逻辑,优先保留有手机号的一条记录,如果有多条记录含有手机号或有没有手机号,则在此基础上随机保留。

--保留含有手机号的记录行

SELECT t.*

FROM (SELECT *

,ROW_NUMBER() OVER (PARTITION BY name,id_type,id_number ORDER BY tel_number ASC) as row_num

FROM customer) t

WHERE t.row_num = 1;

说明

• ROW_NUMBER(): 从第一行开始,依次为每一行分配一个唯一且连续的号码。

• PARTITION BY col1[, col2...]: 指定分区的列,例如去重的键“姓名、证件类型、证件号码”。

• ORDER BY col [asc|desc]: 指定排序的列。升序( ASC )排列指只保留第一行,而降序排列( DESC )则指保留最后一行。

• WHERE row_num = 1:取ROW_NUMBER()生成的编号1。


3)合并保留:根据业务逻辑,合并完整性高、准确性高的字段信息。例如优先将含有手机号的记录行进行补齐,需要补齐的字段有“是否有车、是否有房、婚姻状况”,其取值是来源为“车险”的对应记录。

--合并保留

SELECT t1.name

,t1.sex

            ,t1.birthday

            ,t1.id_type

            ,t1.id_number

            ,t1.source

            ,t2.is_car

            ,t2.is_house

            ,t2.marital_status

            ,t1.tel_number

FROM

(SELECT t.*

FROM (SELECT *

,ROW_NUMBER() OVER (PARTITION BY name,id_type,id_number ORDER BY tel_number ASC) as row_num

FROM customer) t

WHERE t.row_num = 1) t1

LEFT JOIN

(SELECT *

FROM customer

WHERE source ='车险' and is_car IS NOT NULL AND is_house IS NOT NULL AND marital_status IS NOT NULL) t2

ON t1.name =t2.name

and t1.id_type=t2.id_type

and t1.id_number=t2.id_number

说明

t1 表是优先保留含有手机的记录行(去重),并作为主表,t2表是需要补齐的字段来源表。两张表通过“姓名+证件类型+证件号码”进行关联,然后合并需要的信息。

6、附:全字段去重

在数据库应用时,例如,重复误操作、数据翻倍等原因造成的全字段重复,此时也要进行去重。 那除了前面介绍的3种方式外,大家还可以使用关键字DISTINCT、UNION 进行去重,但需要注意其数据量及SQL 性能。 (大家自行测试)


1 DISTINCT (假设全部有如下三个字段)


2 UNION(假设全部有如下三个字段)

四、数据去重效率提升建议

最好的去重其实是在数据源头就进行“拦截”。当然了, 因业务流转也不可能完全避免,但是我们可以提高去重的效率:


• 选择合适的去重算法

根据数据集的特点和规模,选择适合的去重算法,可以大大提高去重效率。

• 优化数据存储结构

采用合适的数据存储结构,如哈希表、B+树等,可以加快数据的查找和比较速度,从而提高去重效率。

• 并行化处理

采用并行化处理的方式,将数据集分成多个子集,分别进行去重处理,最后合并结果,可以大大加快去重速度。

• 使用索引加速查找

对数据集中的关键字段建立索引,可以加速查找和比较速度,从而提高去重效率。

• 前置过滤

采用前置过滤的方式,先对数据集进行一些简单的筛选和处理,如去除空值、去除无效字符等,可以减少比较次数,从而提高去重效率。

• 去重结果缓存(临时表)

对去重结果进行缓存,可以避免重复计算,从而提高去重效率。

• 不建议重写(备份)

涉及一些分区表,等不建议直接将去重后的结果集重写到生产表,创建临时换成,或进行备份后操作。

五、总结

数据去重涉及到的面非常广,包括重复数据的发现、去重规则的定义、去重的方法与效率、去重的困难与挑战等等。但是,去重原则只有一个,那就是以业务为导向。根据业务需求去定义重复数据、制定去重规则和方案。在GaussDB数据库的使用过程,我们同样会遇到去重的场景。本文从应用背景、案例、去重方案等方面给大家做了介绍,欢迎测试、交流。



——结束

「喜欢这篇文章,您的关注和赞赏是给作者最好的鼓励」
关注作者
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文章的来源(墨天轮),文章链接,文章作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论