Event Time & Processing Time

Event Time:事件创建的时间
Processing Time:执行操作算子的当前机器的本地时间
官网权威解释可以参考
https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/concepts/time/#notions-of-time-event-time-and-processing-time
真实业务场景中,我们往往更关心事件时间(Event Time),Flink 从 1.12 起流的时间特性默认设置为 TimeCharacteristic.EventTime

Watermark
当 Flink 以 Event Time 模式处理数据流时,会根据数据里的时间戳来处理基于时间的算子,通常系统由于网络抖动、分布式架构等原因,会导致乱序数据的产生,从而导致窗口计算不精确。
Fink 为了避免乱序数据带来的窗口计算不精确的问题,引入了 Watermark 机制。


Watermark 用于标记 Event Time 的前进过程
Watermark 跟随 DataStream Event Time 变动,并自身携带 TimeStamp
Watermark 用于表明所有较早的事件已经(可能)到达
Watermark 本身也属于特殊的事件
官网权威解释可以参考
https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/concepts/time/#event-time-and-watermarks
在 Flink 中,Watermark 由应用程序开发人员生成,这通常需要开发人员对业务的上下游数据乱序的程度有一定的了解;如果 Watermark 设置的延迟太久,收到结果的速度可能就会很慢,解决办法是在水位线到达之前输出一个近似结果;而如果 Watermark 到达的太早,则可能收到错误结果,不过可以通过 Flink 处理迟到数据的机制来解决这个问题。
Demo
Maven Dependency
<?xml version="1.0" encoding="UTF-8"?><project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>org.fool</groupId><artifactId>flink</artifactId><version>1.0-SNAPSHOT</version><properties><maven.compiler.source>8</maven.compiler.source><maven.compiler.target>8</maven.compiler.target></properties><dependencies><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>1.12.5</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java_2.12</artifactId><version>1.12.5</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients_2.12</artifactId><version>1.12.5</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka_2.12</artifactId><version>1.12.5</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-elasticsearch7_2.12</artifactId><version>1.12.5</version></dependency><dependency><groupId>org.apache.bahir</groupId><artifactId>flink-connector-redis_2.11</artifactId><version>1.0</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.20</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.26</version></dependency></dependencies></project>
SRC
src/main/java/org/fool/flink/contract/Sensor.java
package org.fool.flink.contract;import lombok.AllArgsConstructor;import lombok.Data;import lombok.NoArgsConstructor;@Data@NoArgsConstructor@AllArgsConstructorpublic class Sensor {private String id;private Long timestamp;private Double temperature;}
src/main/java/org/fool/flink/window/WindowWatermarkTest.java
package org.fool.flink.window;import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;import org.apache.flink.api.common.eventtime.Watermark;import org.apache.flink.api.common.eventtime.WatermarkGenerator;import org.apache.flink.api.common.eventtime.WatermarkGeneratorSupplier;import org.apache.flink.api.common.eventtime.WatermarkOutput;import org.apache.flink.api.common.eventtime.WatermarkStrategy;import org.apache.flink.api.common.functions.MapFunction;import org.apache.flink.api.common.typeinfo.TypeInformation;import org.apache.flink.api.java.functions.KeySelector;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;import org.apache.flink.streaming.api.windowing.time.Time;import org.apache.flink.util.OutputTag;import org.fool.flink.contract.Sensor;public class WindowWatermarkTest {public static void main(String[] args) throws Exception {StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();environment.setParallelism(1);// environment.setParallelism(4);DataStream<String> inputStream = environment.socketTextStream("localhost", 7878);DataStream<Sensor> dataStream = inputStream.map(new MapFunction<String, Sensor>() {@Overridepublic Sensor map(String value) throws Exception {String[] fields = value.split(",");return new Sensor(fields[0], new Long(fields[1]), new Double(fields[2]));}}).assignTimestampsAndWatermarks(new WatermarkStrategy<Sensor>() {@Overridepublic WatermarkGenerator<Sensor> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {return new WatermarkGenerator<Sensor>() {private final long maxOutOfOrderness = 2000; // 2 secondsprivate long currentMaxTimestamp;@Overridepublic void onEvent(Sensor sensor, long eventTimestamp, WatermarkOutput output) {// System.out.println("sensor.getTimestamp(): " + sensor.getTimestamp() * 1000L);// System.out.println("eventTimestamp: " + eventTimestamp);currentMaxTimestamp = Math.max(sensor.getTimestamp() * 1000L, eventTimestamp);// System.out.println("currentMaxTimestamp1: " + currentMaxTimestamp);}@Overridepublic void onPeriodicEmit(WatermarkOutput output) {// System.out.println("currentMaxTimestamp2: " + currentMaxTimestamp);output.emitWatermark(new Watermark(currentMaxTimestamp - maxOutOfOrderness - 1));}};}}.withTimestampAssigner(new SerializableTimestampAssigner<Sensor>() {@Overridepublic long extractTimestamp(Sensor sensor, long recordTimestamp) {return sensor.getTimestamp() * 1000L;}}));OutputTag<Sensor> lateTag = new OutputTag<>("late", TypeInformation.of(Sensor.class));SingleOutputStreamOperator<Sensor> minStream = dataStream.keyBy(new KeySelector<Sensor, String>() {@Overridepublic String getKey(Sensor sensor) throws Exception {return sensor.getId();}}).window(TumblingEventTimeWindows.of(Time.seconds(15))).allowedLateness(Time.minutes(1)).sideOutputLateData(lateTag).minBy("temperature");minStream.print("min temp");minStream.getSideOutput(lateTag).print("late");environment.execute();}}
Note: 当前并行度是 1,Watermark 设置为 2 秒
environment.setParallelism(1);
Run
Socket Input
1,1628754405,35.81,1628754420,34.81,1628754422,33.8
Note:1628754422 这个时间点会触发窗口 [05, 20) 这个窗口计算
Console Output
min temp> Sensor(id=1, timestamp=1628754405, temperature=35.8)
Socket Input
1,1628754406,30.81,1628754407,31.8
Note:在 1628754422 这个时间点后继续输入, 1628754406、1628754407 后仍旧会触发窗口计算
Console Output
min temp> Sensor(id=1, timestamp=1628754406, temperature=30.8)min temp> Sensor(id=1, timestamp=1628754406, temperature=30.8)
Note:因为设置了 1 分钟的 allowedLateness,1628754406、1628754407 这两个迟到的事件在 [05, 20) 这个窗口已经触发过计算后仍旧会触发窗口计算
allowedLateness(Time.minutes(1))
Socket Input
1,1628754482,28.8
Note:在 1628754407 这个时间点后继续输入
Console Output
min temp> Sensor(id=1, timestamp=1628754422, temperature=33.8)
Note:1628754482 这个时间点,1 分钟的 allowedLateness 的窗口会关闭,触发窗口计算
Socket Input
1,1628754411,30.31,1628754412,31.3
Note:在 1628754482 这个时间点后继续输入,即 1 分钟的 allowedLateness 的窗口已经关闭
Console Output
late> Sensor(id=1, timestamp=1628754411, temperature=30.3)late> Sensor(id=1, timestamp=1628754412, temperature=31.3)
Note:1 分钟的 allowedLateness 的窗口关闭后,1628754411、1628754412 这两个迟到的事件会进入 side output
完整的 Socket Input

完整的 Console Output

Key Point
以上操作都是基于并行度为 1 的情况下进行的,当设置的并行度不为 1 时,比如设置并行度为 4,结果会不一样。
environment.setParallelism(4);
并行度不为 1 的时候,测试输出的时候,Watermark 在上下游任务之间传递的规则:必须是每一个分区的 Watermark 都要上升,取所有分区中最小的值才是当前的 Watermark,才会触发窗口聚合计算。
Socket Input

Note:4 个分区的 Watermark 都到了 1628754422,才会触发窗口聚合计算
Console Output

Reference
https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/dev/datastream/event-time/generating_watermarks/
泰克风格 只讲干货 不弄玄虚




