3月14日下午,DolphinDB 受邀出席由卡方科技与华安证券携手举办的私募行业交流会。此次盛会汇聚了私募行业的精英力量。众多国内成长型私募机构代表齐聚一堂,共同探讨私募领域的多元化合作策略,携手书写行业发展的新篇章。
在分享环节,DolphinDB 创始人、CEO 周小华博士带来了一场精彩演讲。他不仅对中高频量化交易的解决方案进行了深入剖析,还就当前热点 AI 大模型展开了富有洞见的探讨。现在,让我们一同回顾周博士在现场的精彩分享。高频数据存储
订单簿
在研究市场的微观结构时,每家机构都希望能够对逐笔数据进行挖掘,高效、灵活处理订单簿数据。目前市面上多数快照引擎普遍采取每三秒生成一次快照的方式,这样的频率难以捕捉更为细致的信息,例如三秒内所有交易的平均价格,以及最后一笔成交与最后一笔报价之间的精确时间差。这些细微的数据点对于精确分析市场动态至关重要。为此,DolphinDB 提供了订单簿数据处理框架允许用户自定义指标,生成交易信号,助力策略开发。DolphinDB 的订单簿数据处理架构,提供了高度的灵活性和性能保障,能够满足用户的个性化业务需求。高频回测
市场上,对于中低频的回测产品,用户有许多选择。但是在对高频数据进行回测时,由于数据量巨大,性能时延要求高、开发难度大等特点,市场上并没有太多成熟的产品,用户往往选择自研。为此,DolphinDB 提供了一套模拟撮合引擎,方便用户在中高频策略回测中模拟实际交易,从而更合理地评估和推断策略在真实交易中的效果。DolphinDB 模拟撮合引擎支持订单成交比例和延时等设置,多笔同方向的用户委托订单同时撮合时,遵循按照价格优先、时间优先的原则进行撮合成交,方便用户在高频策略回测中模拟实际交易。模拟撮合引擎插件使用 C++ 开发,结合 DolphinDB 分布式数据库,能极大地减少高频策略回测的整体耗时。流批一体的高频因子
因子挖掘是量化交易的基石,挖掘中高频行情数据中的有价值因子并建模回测,构建交易系统是量化团队的必要路径。DolphinDB 整合历史与实时数据提供了实时流计算框架,用户在投研阶段基于批量数据开发的核心因子表达式,经封装后,可以无缝应用于实际生产环境中。由此,实时行情订阅、行情数据收录、交易实时计算、盘后研究建模,可以用同一套代码实现。这不但确保了历史回放和生产交易的数据一致性,还大大降低了用户的开发与代码维护成本。同时,流计算框架在算法路径上进行了精细的优化,兼顾了高效开发和计算性能的优势。AI & DolphinDB

文章转载自DolphinDB智臾科技,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。




