暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

《Akka Cookbook》之 gRPC 服务

羊八井花园 2019-11-27
382

定义消息和服务


syntax = "proto3";
option java_multiple_files = true;
package greeter;
message HelloRequest {
string name = 1;
}
message HelloReply {
string message = 1;
}
service GreeterService {
rpc SayHello (HelloRequest) returns (HelloReply) {}
rpc ItKeepsTalking (stream HelloRequest) returns (HelloReply) {}
rpc ItKeepsReplying (HelloRequest) returns (stream HelloReply) {}
rpc StreamHellos (stream HelloRequest) returns (stream HelloReply) {}
}


这里定义了两个消息:HelloRequest、HelloReply和GreeterService服务,GreeterService定义了4个服务方法,分别是:


  1. SayHello:经典的请求-响应服务,发送一个请求获得一个响应;

  2. ItKeepsTalking:持续不断的发送多个请求,在请求停止后获得一个响应;

  3. ItKeepsReplying:发送一个请求,获得持续不断的多个响应;

  4. streamHellos:持续不断的发送响应的同时也可获得持续不断的响应,可以通过Source.queue来获得可发送数据的Queue和获得响应数据的Source。


实现 gRPC 服务


class GreeterServiceImpl()(implicit system: ActorSystem[_]) extends GreeterService {
  import system.executionContext
override def sayHello(in: HelloRequest): Future[HelloReply] = {
Future.successful(HelloReply(s"Hello, ${in.name}."))
  }
override def itKeepsTalking(
in: Source[HelloRequest, NotUsed]): Future[HelloReply] = {
in.runWith(Sink.seq)
.map(ins => HelloReply("Hello, " + ins.map(_.name).mkString("", ", ", ".")))
  }
override def itKeepsReplying(in: HelloRequest): Source[HelloReply, NotUsed] = {
Source
.fromIterator(() => Iterator.from(1))
.map(n => HelloReply(s"Hello, ${in.name}; this is $n times."))
  }
override def streamHellos(
ins: Source[HelloRequest, NotUsed]): Source[HelloReply, NotUsed] = {
ins.map(in => HelloReply(s"Hello, ${in.name}."))
}
}


Akka gRPC提供了基于 Akka Streams 的API,更多 Akka Streams 的内容请参阅:Akka 流(Streams)。


itKeepsTalking服务从客户端持续接收HelloRequest消息流,直到客户端主动停止(服务端也可以停止这个流,但这个服务语义上并未体现这一点)。这里收集客户端发送的所有元素并通过Sink.seq汇聚成一个序列,再构造HelloReply消息发送回客户端。


itKeepsReplying服务从客户端接收一个请求,持续不断的向客户端发送响应(一直到客户端主动终止)。这可以用来实现某些实时监控业务,当服务端收到对某个指标的监控请求后,服务端按一定的时间间隔持续不断的向客户端发送监控指标:


def sendMetrics(in: MetricRequest): Source[MetricItem, NotUsed] = {
val (queue, source) =
Source.queue[MetricItem](16, OverflowStrategy.backpressure).preMaterialize()
Source
.tick(1.seconds, 1.seconds, MetricItem())
.runForeach(metric => queue.offer(metric))
source
}


sendMetrics服务模拟了一个监控指标发送,每隔1秒钟向客户端发送一个指标数据。


streamHellos服务从客户端获得持续的请求,同时可异步的向客户端返回持续的响应。我们可以基于它来实现心跳。


  def heartbeat(in: Source[Heartbeat, NotUsed]): Source[HeartbeatAck, NotUsed] = {
val ref: ActorRef[Heartbeat] = getClientManager(in.clientId) //
in.map { req =>
ref ! req
HeartbeatAck()
}
}


heartbeat收到心跳请求后马上就像客户端返回一个HeartbeatAck的心跳确认请求,因为这里心跳只用于保持连接,返回一个空响应即可。而ref ! req将心跳请求发送给ref指代的一个客户端Manager业务处理actor,由actor实现心跳超时监控,可以通过配置actor的ReceiveTimeout来实现心跳超时判断。


测试 gRPC 服务


使用 Scalatest 对实现的4个gRPC服务进行测试,下面是单元测试代码:


"sayHello" in {
greeterClient.sayHello(HelloRequest("Scala")).futureValue should ===(
HelloReply("Hello, Scala."))
}


"itKeepsReplying" in {
greeterClient
.itKeepsReplying(HelloRequest("Scala"))
.take(5)
.runWith(Sink.seq)
.futureValue should ===(
Seq(
HelloReply("Hello, Scala; this is 1 times."),
HelloReply("Hello, Scala; this is 2 times."),
HelloReply("Hello, Scala; this is 3 times."),
HelloReply("Hello, Scala; this is 4 times."),
HelloReply("Hello, Scala; this is 5 times.")))
}
"itKeepsTalking" in {
val (queue, in) =
Source
.queue[HelloRequest](16, OverflowStrategy.backpressure)
.preMaterialize()
val f = greeterClient.itKeepsTalking(in)
Seq("Scala", "Java", "Groovy", "Kotlin").foreach(program =>
queue.offer(HelloRequest(program)))
TimeUnit.SECONDS.sleep(1)
queue.complete()
f.futureValue should ===(HelloReply("Hello, Scala, Java, Groovy, Kotlin."))
}
"streamHellos" in {
val (queue, in) =
Source
.queue[HelloRequest](16, OverflowStrategy.backpressure)
.preMaterialize()
val f = greeterClient.streamHellos(in).runWith(Sink.seq)
Seq("Scala", "Java", "Groovy", "Kotlin").foreach(item =>
queue.offer(HelloRequest(item)))
TimeUnit.SECONDS.sleep(1)
queue.complete()
f.futureValue should ===(
Seq(
HelloReply("Hello, Scala."),
HelloReply("Hello, Java."),
HelloReply("Hello, Groovy."),
HelloReply("Hello, Kotlin.")))
}


在运行测试前需要先启动gRPC服务,在 Scalatest 的beforeAll函数内启动gRPC HTTP 2服务:


override protected def beforeAll(): Unit = {
super.beforeAll()
val handler = GreeterServiceHandler(new GreeterServiceImpl())
Http().bindAndHandleAsync(handler, "localhost", 8000)
greeterClient = GreeterServiceClient(
GrpcClientSettings.fromConfig(GreeterService.name))
}


在构造 GreeterServiceClient gRCP客户端时需要提供GrpcClientSettings设置选项,这里通过调用fromConfig函数来从 HOCON 配置文件里读取gRPC服务选项,相应的application-test.conf配置文件内容如下:


akka.http.server.preview.enable-http2 = on
akka.grpc.client {
"greeter.GreeterService" {
host = "localhost"
port = 8000
use-tls = false
}
}


其中use-tls设置gRPC客户端不使用HTTPs建立连接,因为我们这个单元测试启动的gRPC HTTP服务不未启动SSL/TLS。


小结


本文节选自《Akka Cookbook》,更多内容请访问《Akka Cookbook》:
https://www.yangbajing.me/akka-cookbook/grpc/grpc.html

文章转载自羊八井花园,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论