HDFS简介:
HDFS 是 Hadoop Distribute File System 的简称,意为:Hadoop 分布式文件系统。是 Hadoop 核心组件之一,作为最底层的分布式存储服务而存在。
分布式文件系统解决的问题就是大数据存储。它们是横跨在多台计算机上的存储系统。分布式文件系统在大数据时代有着广泛的应用前景,它们为存储和处理超大规模数据提供所需的扩展能力。

分布式文件系统详细介绍
在hadoop当中,分布式文件系统(HDFS),对文件系统有一个抽象,HDFS属于当中的一个实现类,也就是说分布式文件系统类似于一个接口,定义了标准,下面有很多的实现类,其中HDFS是一个子实现类而已,但是现在很多人都只知道一种就是HDFS的实现,并没有了解过其他的实现类,其实分布式文件系统的实现有很多种,
HDFS分布式文件系统设计目标
1、 硬件错误
由于集群很多时候由数量众多的廉价机组成,使得硬件错误成为常态
2、 数据流访问
所有应用以流的方式访问数据,设置之初便是为了用于批量的处理数 据,而不是低延时的实时交互处理
3、 大数据集
典型的HDFS集群上面的一个文件是以G或者T数量级的,支持一个集群当中的文件数量达到千万数量级
4、 简单的相关模型 假定文件是一次写入,多次读取的操作
5、 移动计算比移动数据便宜
一个应用请求的计算,离它操作的数据越近,就越高效
6、 多种软硬件的可移植性
HDFS的来源
HDFS起源于Google的GFS论文(GFS,Mapreduce,BigTable为google的旧的三驾马车)
发表于2003年10月
HDFS是GFS的克隆版(Hadoop Distributed File system)
易于扩展的分布式文件系统
运行在大量普通廉价机器上,提供容错机制
为大量用户提供性能不错的文件存取服务
HDFS的特性
首先,它是一个文件系统,用于存储文件,通过统一的命名空间目录树来定位文件;
其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。
master/slave 架构
HDFS 采用 master/slave 架构。一般一个 HDFS 集群是有一个 Namenode 和一定数目的Datanode 组成。Namenode 是 HDFS 集群主节点,Datanode 是 HDFS 集群从节点,两种角色各司其职,共同协调完成分布式的文件存储服务。
分块存储
HDFS 中的文件在物理上是分块存储(block)的,块的大小可以通过配置参数来规定,默认大小在 hadoop2.x 版本中是 128M。
名字空间(NameSpace)
HDFS 支持传统的层次型文件组织结构。用户或者应用程序可以创建目录,然后将文件保存在这些目录里。文件系统名字空间的层次结构和大多数现有的文件系统类似:用户可以创建、删除、移动或重命名文件。
Namenode 负责维护文件系统的名字空间,任何对文件系统名字空间或属性的修改都将被Namenode 记录下来。
HDFS 会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件
Namenode 元数据管理
我们把目录结构及文件分块位置信息叫做元数据。Namenode 负责维护整个hdfs文件系统的目录树结构,以及每一个文件所对应的 block 块信息(block 的id,及所在的datanode 服务器)。
Datanode 数据存储
文件的各个 block 的具体存储管理由 datanode 节点承担。每一个 block 都可以在多个datanode 上。Datanode 需要定时向 Namenode 汇报自己持有的 block信息。存储多个副本(副本数量也可以通过参数设置 dfs.replication,默认是 3)
副本机制
为了容错,文件的所有 block 都会有副本。每个文件的 block 大小和副本系数都是可配置的。应用程序可以指定某个文件的副本数目。副本系数可以在文件创建的时候指定,也可以在之后改变
一次写入,多次读出
HDFS 是设计成适应一次写入,多次读出的场景,且不支持文件的修改。
正因为如此,HDFS 适合用来做大数据分析的底层存储服务,并不适合用来做.网盘等应用,因为,修改不方便,延迟大,网络开销大,成本太高




