from Wikipedia
In computer science, the compare-and-swap CPU instruction ("CAS") (or the Compare & Exchange - CMPXCHG instruction in the x86 and Itanium architectures) is a special instruction that atomically compares the contents of a memory location to a given value and, if they are the same, modifies the contents of that memory location to a given new value. The result of the operation must indicate whether it performed the substitution; this can be done either with a simple boolean response (this variant is often called compare-and-set), or by returning the value read from the memory location (not the value written to it).
CAS is used to implement synchronization primitives like semaphores and mutexes, as well as more sophisticated lock-free and wait-free algorithms. Maurice Herlihy (1991) proved that CAS can implement more of these algorithms than atomic read, write, and fetch-and-add, and that, assuming a fairly large amount of memory, it can implement all of them [1].
Algorithms built around CAS typically read some key memory location and remember the old value. Based on that old value, they compute some new value. Then they try to swap in the new value using CAS, where the comparison checks for the location still being equal to the old value. If CAS indicates that the attempt has failed, it has to be repeated from the beginning: the location is re-read, a new value is computed and the CAS is tried again.
Some of these algorithms are affected by and must handle the problem of a false positive match, or the ABA problem. It's possible that between the time the old value is read and the time CAS is attempted, some other processors or threads change the memory location two or more times such that it acquires a bit pattern which matches the old value. The problem arises if this new bit pattern, which looks exactly like the old value, has a different meaning: for instance, it could be a recycled address, or a wrapped version counter.
CAS, and other atomic instructions, are unnecessary in uniprocessor systems, because the atomicity of any sequence of instructions can be achieved by disabling interrupts while executing it. However, often disabling interrupts is too expensive to be practical, so even programs only intended to run on uniprocessor machines will benefit by using them, as in the case of Linux's futexes.
In multiprocessor systems, it is impossible and undesirable to disable interrupts on all processors at the same time. Even with interrupts disabled, two or more processors could be attempting to access the same semaphore's memory at the same time. The compare-and-swap instruction allows any processor to atomically test and modify a memory location, preventing such multiple processor collisions.
In computer science, the compare-and-swap CPU instruction ("CAS") (or the Compare & Exchange - CMPXCHG instruction in the x86 and Itanium architectures) is a special instruction that atomically compares the contents of a memory location to a given value and, if they are the same, modifies the contents of that memory location to a given new value. The result of the operation must indicate whether it performed the substitution; this can be done either with a simple boolean response (this variant is often called compare-and-set), or by returning the value read from the memory location (not the value written to it).
CAS is used to implement synchronization primitives like semaphores and mutexes, as well as more sophisticated lock-free and wait-free algorithms. Maurice Herlihy (1991) proved that CAS can implement more of these algorithms than atomic read, write, and fetch-and-add, and that, assuming a fairly large amount of memory, it can implement all of them [1].
Algorithms built around CAS typically read some key memory location and remember the old value. Based on that old value, they compute some new value. Then they try to swap in the new value using CAS, where the comparison checks for the location still being equal to the old value. If CAS indicates that the attempt has failed, it has to be repeated from the beginning: the location is re-read, a new value is computed and the CAS is tried again.
Some of these algorithms are affected by and must handle the problem of a false positive match, or the ABA problem. It's possible that between the time the old value is read and the time CAS is attempted, some other processors or threads change the memory location two or more times such that it acquires a bit pattern which matches the old value. The problem arises if this new bit pattern, which looks exactly like the old value, has a different meaning: for instance, it could be a recycled address, or a wrapped version counter.
CAS, and other atomic instructions, are unnecessary in uniprocessor systems, because the atomicity of any sequence of instructions can be achieved by disabling interrupts while executing it. However, often disabling interrupts is too expensive to be practical, so even programs only intended to run on uniprocessor machines will benefit by using them, as in the case of Linux's futexes.
In multiprocessor systems, it is impossible and undesirable to disable interrupts on all processors at the same time. Even with interrupts disabled, two or more processors could be attempting to access the same semaphore's memory at the same time. The compare-and-swap instruction allows any processor to atomically test and modify a memory location, preventing such multiple processor collisions.
「喜欢这篇文章,您的关注和赞赏是给作者最好的鼓励」
关注作者
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文章的来源(墨天轮),文章链接,文章作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。




