
1. 系统环境与硬件准备
1.1 硬件配置
GPU: 20张NVIDIA A100 80GB(推荐4节点 × 5卡或2节点 × 10卡,需支持NVLink和InfiniBand)
CPU: 至少2× Intel Xeon Platinum 8380(64核以上)
内存: 每个节点≥1TB DDR4
存储: 每个节点配置RAID0 NVMe SSD(≥10TB,用于高速数据缓存)
网络: InfiniBand HDR 200G(多节点必备,单节点可选RoCE)
1.2 openEuler 24.03 基础配置
# 安装必要依赖sudo dnf install -y kernel-devel kernel-headers gcc make cmake git python3-develsudo dnf groupinstall -y "Development Tools"# 禁用防火墙和SELinux(生产环境需谨慎)sudo systemctl stop firewalldsudo systemctl disable firewalldsudo setenforce 0sudo sed -i 's/SELINUX=enforcing/SELINUX=disabled/g' etc/selinux/config# 配置SSH免密登录(多节点训练必备)ssh-keygen -t rsassh-copy-id user@node1ssh-copy-id user@node2...
2. NVIDIA驱动与CUDA生态安装
2.1 安装NVIDIA驱动(适配openEuler 24.03)
# 检查内核版本(需与驱动兼容)uname -r # 例如:5.15.0-101.oe2403.x86_64# 禁用nouveau驱动echo "blacklist nouveau" | sudo tee etc/modprobe.d/blacklist-nouveau.confsudo dracut --force# 下载并安装驱动(选择CUDA 12.2+兼容版本)wget https://us.download.nvidia.com/tesla/535.129.03/NVIDIA-Linux-x86_64-535.129.03.runsudo sh NVIDIA-Linux-x86_64-535.129.03.run --silent --dkms# 验证驱动nvidia-smi # 应显示20张A100
2.2 安装CUDA 12.2 + cuDNN 8.9 + NCCL 2.18
# 安装CUDA Toolkitwget https://developer.download.nvidia.com/compute/cuda/12.2.2/local_installers/cuda_12.2.2_535.104.05_linux.runsudo sh cuda_12.2.2_535.104.05_linux.run --silent --toolkit# 安装cuDNN和NCCL(需从NVIDIA官网下载)tar -xzf cudnn-linux-x86_64-8.9.6.50_cuda12-archive.tar.xzsudo cp -r cudnn-*-archive/include/* usr/local/cuda/include/sudo cp -r cudnn-*-archive/lib/* usr/local/cuda/lib64/tar -xzf nccl_2.18.5-1+cuda12.2_x86_64.txzsudo cp -r nccl_*/lib/* usr/local/cuda/lib64/sudo cp nccl_*/include/* usr/local/cuda/include/# 添加环境变量echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrcecho 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrcsource ~/.bashrc
3. 分布式训练环境搭建
3.1 PyTorch 2.2 + DeepSpeed 安装
# 创建Python虚拟环境python3 -m venv deepseek-envsource deepseek-env/bin/activate# 安装PyTorch与DeepSpeedpip install torch==2.2.0+cu121 torchvision==0.17.0+cu121 torchaudio==2.2.0+cu121 --index-url https://download.pytorch.org/whl/cu121pip install deepspeed==0.13.0 ninja# 验证GPU支持python -c "import torch; print(torch.cuda.device_count())" # 应输出20
3.2 InfiniBand网络优化
# 安装Mellanox OFED驱动(适配openEuler)wget https://content.mellanox.com/ofed/MLNX_OFED-24.01-0.5.6.0/MLNX_OFED_LINUX-24.01-0.5.6.0-rhel9.2-x86_64.tgztar -xzf MLNX_OFED-*.tgzcd MLNX_OFED_LINUX-*-rhel9.2-x86_64sudo ./mlnxofedinstall --without-fw-update --forcesudo etc/init.d/openibd restart# 配置NCCL参数echo 'export NCCL_IB_HCA=mlx5' >> ~/.bashrcecho 'export NCCL_IB_GID_INDEX=3' >> ~/.bashrcecho 'export NCCL_SOCKET_IFNAME=ib0' >> ~/.bashrcecho 'export NCCL_DEBUG=WARN' >> ~/.bashrcsource ~/.bashrc
4. DeepSeek-R1:671B 训练部署
4.1 模型与数据准备
# 克隆DeepSeek官方仓库(假设已授权)git clone https://github.com/deepseek-ai/DeepSeek-R1cd DeepSeek-R1# 下载预训练权重与数据集wget https://models.deepseek.com/deepseek-r1-671b.tar.gztar -xzf deepseek-r1-671b.tar.gz# 数据集预处理(需根据实际数据调整)python tools/preprocess_data.py --input data/raw_text.jsonl --output-prefix my_dataset
4.2 分布式启动脚本(4节点 × 5卡)
# 创建hostfile(假设节点为node1-node4)cat > hostfile << EOFnode1 slots=5node2 slots=5node3 slots=5node4 slots=5EOF# 使用DeepSpeed启动训练deepspeed --hostfile hostfile \--master_addr node1 \--launcher openmpi \--num_gpus 5 \train.py \--model_config configs/671b.yaml \--train_data my_dataset \--deepspeed_config ds_config.json \--batch_size 8 \--gradient_accumulation_steps 16
4.3 DeepSpeed配置示例(ds_config.json
)
{"train_micro_batch_size_per_gpu": 1,"gradient_accumulation_steps": 16,"optimizer": {"type": "AdamW","params": {"lr": 1e-5,"weight_decay": 0.01}},"zero_optimization": {"stage": 3,"offload_optimizer": {"device": "cpu","pin_memory": true},"allgather_partitions": true,"allgather_bucket_size": 5e8,"overlap_comm": true},"fp16": {"enabled": true,"loss_scale_window": 1000},"flops_profiler": {"enabled": true,"profile_step": 10}}
5. 性能极限调优
5.1 GPU内核级优化
# 锁定GPU频率至最高性能sudo nvidia-smi -lgc 1410,1410 # A100默认峰值频率# 启用持久化模式sudo nvidia-smi -pm 1# 启用MPS(多进程服务)sudo nvidia-cuda-mps-control -d
5.2 内存与通信优化
# 在模型代码中添加(减少内存碎片)torch.cuda.set_per_process_memory_fraction(0.9)# 启用激活检查点(Activation Checkpointing)from torch.utils.checkpoint import checkpointdef forward(self, x):return checkpoint(self._forward_impl, x)
5.3 openEuler内核参数调优
# 调整网络缓冲区(InfiniBand优化)echo "net.core.rmem_max=2147483647" | sudo tee -a /etc/sysctl.confecho "net.core.wmem_max=2147483647" | sudo tee -a /etc/sysctl.conf# 提升文件句柄限制echo "* soft nofile 1048576" | sudo tee -a /etc/security/limits.confecho "* hard nofile 1048576" | sudo tee -a /etc/security/limits.conf# 应用配置sudo sysctl -p
6. 监控与故障排查
6.1 实时监控工具
# GPU监控(跨节点)nvidia-smi --query-gpu=timestamp,name,utilization.gpu,utilization.memory --format=csv -l 5# NCCL通信分析export NCCL_DEBUG=INFOexport NCCL_DEBUG_SUBSYS=COLL# 带宽测试(节点间)ib_write_bw -d mlx5_0 -F --report_gbits
6.2 常见问题解决
1、NCCL通信超时
export NCCL_IB_TIMEOUT=22export NCCL_IB_RETRY_CNT=7
2、OOM(显存不足)
启用ZeRO-3 Offload到CPU或NVMe:
"offload_optimizer": { "device": "nvme", "nvme_path": "/mnt/nvme" }
3、训练速度不达预期
使用Nsight Systems分析瓶颈:
nsys profile -w true -o deepseek_profile --capture-range=cudaProfilerApi \--stop-on-range-end=true --cudabacktrace=true python train.py
关键性能指标参考
通过以上步骤,可在 openEuler 24.03 上实现 DeepSeek-R1:671B 的高效分布式训练。建议结合NVIDIA Magnum IO 进行进一步优化。
文章转载自OpenAtom openEuler,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。




