暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

pytorch入门 - LetNet5 神经网络

chester技术分享 2025-06-06
105

1.LetNet5简介

 

LeNet5是由Yann LeCun等人在1998年提出的一种卷积神经网络架构,主要用于手写数字识别。它是早期卷积神经网络的成功应用之一,为现代深度学习模型奠定了基础。LeNet5的名字来源于其发明者LeCun和网络层数(5层)。

LeNet5的主要特点包括:

  • 使用卷积层提取空间特征
  • 使用子采样层(池化层)降低特征维度
  • 使用全连接层进行分类
  • 采用梯度下降法进行训练

虽然LeNet5最初是为识别手写数字设计的,但我们可以将其应用于更广泛的图像分类任务,如FashionMNIST数据集。

2. LeNet5网络结构原理

LeNet5的网络结构可以分为7层(包含输入层),但通常我们说有5层可训练层(2个卷积层和3个全连接层)。让我们详细分析每一层的结构:

2.1 输入层

原始LeNet5的输入是32×32的灰度图像。在我们的实现中,为了适应FashionMNIST数据集,我们将其调整为28×28。

2.2 C1层 - 第一卷积层
  • 卷积核大小: 5×5
  • 卷积核数量: 6
  • 步长: 1
  • 填充: 2 (为了保持输出尺寸与输入相同)
  • 激活函数: Sigmoid

神经元数量计算
输入尺寸:28×28
输出尺寸:(28 + 2 * 2 - 5)/1 + 1 = 28×28
每个特征图有28×28=784个神经元
共有6个特征图,所以总神经元数=6×784=4704

2.3 S2层 - 第一池化层
  • 池化类型: 平均池化
  • 池化大小: 2×2
  • 步长: 2

神经元数量计算
输入尺寸:28×28
输出尺寸:(28 - 2)/2 + 1 = 14×14
每个特征图有14×14=196个神经元
共有6个特征图,所以总神经元数=6×196=1176

2.4 C3层 - 第二卷积层
  • 卷积核大小: 5×5
  • 卷积核数量: 16
  • 步长: 1
  • 填充: 0
  • 激活函数: Sigmoid

神经元数量计算
输入尺寸:14×14
输出尺寸:(14 - 5)/1 + 1 = 10×10
每个特征图有10×10=100个神经元
共有16个特征图,所以总神经元数=16×100=1600

2.5 S4层 - 第二池化层
  • 池化类型: 平均池化
  • 池化大小: 2×2
  • 步长: 2

神经元数量计算
输入尺寸:10×10
输出尺寸:(10 - 2)/2 + 1 = 5×5
每个特征图有5×5=25个神经元
共有16个特征图,所以总神经元数=16×25=400

2.6 C5层 - 第一全连接层
  • 输入: 16×5×5=400
  • 输出: 120
  • 激活函数: Sigmoid

神经元数量: 120

2.7 F6层 - 第二全连接层
  • 输入: 120
  • 输出: 84
  • 激活函数: Sigmoid

神经元数量: 84

2.8 输出层
  • 输入: 84
  • 输出: 10 (对应10个类别)
  • 激活函数: Softmax

神经元数量: 10

3. PyTorch实现详解

现在让我们详细分析LeNet5的PyTorch实现代码,包含每一行的解释。

3.1 模型定义 (main.py)
    import torch
    import torch.nn as nn
    from torchsummary import summary
    class LeNet5(nn.Module):
        def __init__(self, num_classes=10):
            super(LeNet5, self).__init__()
            # 第一卷积层: 输入通道1(灰度图), 输出通道6, 5x5卷积核, padding=2保持尺寸
            self.conv1 = nn.Conv2d(
                in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2
            )
            self.sig = nn.Sigmoid()  # Sigmoid激活函数
            self.pool = nn.AvgPool2d(kernel_size=2, stride=2)  # 平均池化层
            # 第二卷积层: 输入通道6, 输出通道16, 5x5卷积核, 无padding
            self.conv2 = nn.Conv2d(
                in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0
            )
            self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2)  # 第二个平均池化层
            self.flatten = nn.Flatten()  # 展平层,将多维输入一维化
            # 第一个全连接层: 输入16 * 5 * 5=400, 输出120
            self.f5 = nn.Linear(16 * 5 * 5120)
            # 第二个全连接层: 输入120, 输出84
            self.f6 = nn.Linear(12084)
            # 输出层: 输入84, 输出类别数
            self.f7 = nn.Linear(84, num_classes)
            self.softmax = nn.Softmax(dim=1)  # Softmax激活函数
        def forward(self, x):
            # 第一卷积块
            x = self.conv1(x)  # 卷积
            x = self.sig(x)     # 激活
            x = self.pool(x)    # 池化
            # 第二卷积块
            x = self.conv2(x)   # 卷积
            x = self.sig(x)     # 激活
            x = self.pool2(x)   # 池化
            # 全连接部分
            x = self.flatten(x)  # 展平
            x = self.f5(x)       # 全连接
            x = self.sig(x)      # 激活
            x = self.f6(x)       # 全连接
            x = self.sig(x)      # 激活
            x = self.f7(x)       # 输出层
            # 注意: 训练时通常不在这里使用softmax,因为CrossEntropyLoss已经包含了softmax
            return x
    if __name__ == "__main__":
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model = LeNet5(num_classes=10).to(device)
        summary(model, (12828))  # 打印模型结构摘要


    3.2 训练脚本 (train.py)
      import os
      import sys
      sys.path.append(os.getcwd())  # 添加当前目录到系统路径,以便导入自定义模块
      import time
      from torchvision.datasets import FashionMNIST  # 导入FashionMNIST数据集
      from torchvision import transforms  # 图像预处理
      from torch.utils.data import DataLoader, random_split  # 数据加载和划分
      import numpy as np
      import matplotlib.pyplot as plt  # 绘图
      import torch
      from torch import nn, optim  # 神经网络和优化器
      import copy  # 用于模型参数深拷贝
      import pandas as pd  # 数据处理
      from LetNet5_model.main import LeNet5  # 导入我们的LeNet5模型
      def train_val_date_load():
          # 加载FashionMNIST训练集
          train_dataset = FashionMNIST(
              root="./data",  # 数据存储路径
              train=True,     # 加载训练集
              download=True,  # 自动下载
              transform=transforms.Compose([
                  transforms.Resize(size=28),  # 调整大小到28x28
                  transforms.ToTensor(),       # 转为Tensor并归一化到[0,1]
              ]),
          )
          # 按8:2划分训练集和验证集
          train_date, val_data = random_split(
              train_dataset,
              [
                  int(len(train_dataset) * 0.8),  # 80%训练
                  len(train_dataset) - int(len(train_dataset) * 0.8),  # 20%验证
              ],
          )
          # 创建数据加载器
          train_loader = DataLoader(
              dataset=train_date, batch_size=128, shuffle=True, num_workers=1
          )
          val_loader = DataLoader(
              dataset=val_data, batch_size=128, shuffle=True, num_workers=1
          )
          return train_loader, val_loader
      def train_model_process(model, train_loader, val_loader, epochs=10):
          device = "cuda" if torch.cuda.is_available() else "cpu"
          optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器
          criterion = nn.CrossEntropyLoss()  # 交叉熵损失
          model.to(device)  # 模型移到设备
          # 初始化变量记录最佳模型和训练过程
          best_model_wts = copy.deepcopy(model.state_dict())
          best_acc = 0.0
          train_loss_all = []
          val_loss_all = []
          train_acc_all = []
          val_acc_all = []
          since = time.time()  # 计时开始
          for epoch in range(epochs):
              print(f"Epoch {epoch + 1}/{epochs}")
              # 初始化统计变量
              train_loss = 0.0
              train_correct = 0
              val_loss = 0.0
              val_correct = 0
              train_num = 0
              val_num = 0
              # 训练阶段
              for step, (images, labels) in enumerate(train_loader):
                  images, labels = images.to(device), labels.to(device)
                  model.train()  # 训练模式
                  outputs = model(images)
                  pre_lab = torch.argmax(outputs, dim=1)  # 预测标签
                  loss = criterion(outputs, labels)  # 计算损失
                  optimizer.zero_grad()  # 梯度清零
                  loss.backward()        # 反向传播
                  optimizer.step()       # 参数更新
                  # 统计信息
                  train_loss += loss.item() * images.size(0)
                  train_correct += torch.sum(pre_lab == labels.data)
                  train_num += labels.size(0)
              # 验证阶段
              for step, (images, labels) in enumerate(val_loader):
                  images, labels = images.to(device), labels.to(device)
                  model.eval()  # 评估模式
                  with torch.no_grad():  # 不计算梯度
                      outputs = model(images)
                      pre_lab = torch.argmax(outputs, dim=1)
                      loss = criterion(outputs, labels)
                      val_loss += loss.item() * images.size(0)
                      val_correct += torch.sum(pre_lab == labels.data)
                      val_num += labels.size(0)
              # 记录本轮结果
              train_loss_all.append(train_loss train_num)
              val_loss_all.append(val_loss / val_num)
              train_acc = train_correct.double() / train_num
              val_acc = val_correct.double() / val_num
              train_acc_all.append(train_acc.item())
              val_acc_all.append(val_acc.item())
              print(f"Train Loss: {train_loss / train_num:.4f}, Train Acc: {train_acc:.4f}, "
                    f"Val Loss: {val_loss / val_num:.4f}, Val Acc: {val_acc:.4f}")
              # 更新最佳模型
              if val_acc_all[-1] > best_acc:
                  best_acc = val_acc_all[-1]
                  best_model_wts = copy.deepcopy(model.state_dict())
          # 训练结束
          time_elapsed = time.time() - since
          print(f"Training complete in {time_elapsed // 60:.0f}{time_elapsed % 60:.0f}s\n"
                f"Best val Acc: {best_acc:.4f}")
          # 保存模型和训练过程
          torch.save(model.state_dict(), "./models/le_net5_best_model.pth")
          train_process = pd.DataFrame({
              "epoch"range(1, epochs + 1),
              "train_loss_all": train_loss_all,
              "val_loss_all": val_loss_all,
              "train_acc_all": train_acc_all,
              "val_acc_all": val_acc_all,
          })
          return train_process
      def matplot_acc_loss(train_process):
          # 绘制训练曲线
          plt.figure(figsize=(125))
          # 损失曲线
          plt.subplot(121)
          plt.plot(train_process["epoch"], train_process["train_loss_all"], label="Train Loss")
          plt.plot(train_process["epoch"], train_process["val_loss_all"], label="Val Loss")
          plt.xlabel("Epoch")
          plt.ylabel("Loss")
          plt.title("Loss vs Epoch")
          plt.legend()
          # 准确率曲线
          plt.subplot(122)
          plt.plot(train_process["epoch"], train_process["train_acc_all"], label="Train Acc")
          plt.plot(train_process["epoch"], train_process["val_acc_all"], label="Val Acc")
          plt.xlabel("Epoch")
          plt.ylabel("Accuracy")
          plt.title("Accuracy vs Epoch")
          plt.legend()
          plt.tight_layout()
          plt.ion()
          plt.show()
          plt.savefig("./models/le_net5_output.png")
      if __name__ == "__main__":
          traindatam, valdata = train_val_date_load()  # 加载数据
          result = train_model_process(LeNet5(), traindatam, valdata, 10)  # 训练模型
          matplot_acc_loss(result)  # 绘制曲线 
      3.3 测试脚本 (test.py)
        import os
        import sys
        sys.path.append(os.getcwd())  # 添加当前目录到系统路径
        import torch
        from torch.utils.data import DataLoader
        from torchvision import transforms
        from torchvision.datasets import FashionMNIST
        from LetNet5_model.main import LeNet5
        def test_data_load():
            # 加载测试集
            test_dataset = FashionMNIST(
                root="./data",
                train=False,  # 测试集
                download=True,
                transform=transforms.Compose([
                    transforms.Resize(size=28),
                    transforms.ToTensor(),
                ]),
            )
            # 创建测试数据加载器
            test_loader = DataLoader(
                dataset=test_dataset, batch_size=128, shuffle=True, num_workers=1
            )
            return test_loader
        def test_model_process(model, test_loader):
            device = "cuda" if torch.cuda.is_available() else "cpu"
            model.to(device)
            model.eval()  # 评估模式
            correct = 0
            total = 0
            with torch.no_grad():  # 不计算梯度
                for images, labels in test_loader:
                    images, labels = images.to(device), labels.to(device)
                    outputs = model(images)
                    _, predicted = torch.max(outputs, 1)  # 获取预测类别
                    total += labels.size(0)
                    correct += torch.sum(predicted == labels.data)  # 统计正确数
            accuracy = correct / total * 100
            print(f"Test Accuracy: {accuracy:.2f}%")  # 打印测试准确率
        if __name__ == "__main__":
            test_loader = test_data_load()  # 加载测试数据
            model = LeNet5()  # 实例化模型
            model.load_state_dict(torch.load("./models/le_net5_best_model.pth"))  # 加载训练好的权重
            test_model_process(model, test_loader)  # 测试模型 

        4. 训练与结果分析

        4.1 训练过程

        训练过程展示了模型在训练集和验证集上的损失和准确率变化。典型的训练过程会显示以下特征:

        1. 损失曲线:

          • 训练损失应随着epoch增加而持续下降
          • 验证损失初期下降,后期可能趋于平稳或略有上升(过拟合)
        2. 准确率曲线:

          • 训练准确率应持续上升
          • 验证准确率初期上升,后期趋于平稳
        4.2 超参数选择

        在我们的实现中使用了以下关键超参数:

        • 学习率: 0.001 (Adam优化器的默认学习率)
        • 批量大小: 128
        • 训练周期: 10
        • 优化器: Adam

        这些参数可以根据具体任务进行调整以获得更好的性能。

        4.3 模型性能

        在FashionMNIST测试集上,LeNet5通常能达到85%-90%的准确率。虽然不如现代深度学习模型,但对于教学和理解CNN基本原理已经足够。

        5. 总结与扩展

        LeNet5虽然是一个简单的CNN模型,但它包含了现代深度学习模型的许多核心概念:

        1. 局部感受野
          : 通过卷积核实现
        2. 权值共享
          : 同一卷积核在整个图像上滑动
        3. 空间子采样
          : 通过池化层实现
        4. 多层感知机
          : 最后的全连接层

        扩展改进建议:

        1. 使用ReLU代替Sigmoid作为激活函数
        2. 使用最大池化代替平均池化
        3. 添加Batch Normalization层
        4. 增加数据增强技术
        5. 尝试不同的学习率调度策略

        通过这些改进,可以显著提高模型在FashionMNIST上的性能。

        LeNet5作为卷积神经网络的鼻祖,其设计思想和实现方式至今仍在影响着深度学习领域。通过实现和理解LeNet5,我们可以更好地掌握现代深度学习模型的基础。


        文章转载自chester技术分享,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

        评论