01
—
Prometheus应用场景
1.1、监控微服务。
1.2、node_exporter监控操作系统。
1.3、mysqld_exporter监控MySQL
1.4、监控Redis1.5、监控Flink
1.6、监控RabbitMQ/Kafka
1.7、Prometheus Operator监控etcd
1.8、监控K8S
链接:官网支持的具体的第三方exporter.
https://prometheus.io/docs/instrumenting/exporters/
02
—
Prometheus的设计目标
事前监控、事中监控、事后监控。
2.1、长期趋势分析。通过对监控样本数据的持续收集和统计,对监控指标进行长期趋势分析。例如,通过对磁盘空间增长率的判断,我们可以提前预测在未来什么时间节点上需要对资源进行扩容。
2.2、两个版本的系统运行资源使用情况的差异如何?在不同容量情况下系统的并发和负载变化如何?通过监控能够方便的对系统进行跟踪和比较。
2.3、告警。当系统出现或者即将出现故障时,监控系统需要迅速反应并通知管理员,从而能够对问题进行快速的处理或者提前预防问题的发生,避免出现对业务的影响。
2.4、故障分析与定位。当问题发生后,需要对问题进行调查和处理。通过对不同监控监控以及历史数据的分析,能够找到并解决根源问题。
2.5、数据可视化(通过grafana可视化仪表盘获取系统状态、资源使用情况、服务状态)
03
—
Prometheus的监控指标
3.1、网络监控
网络性能监控:主要涉及网络监测,网络实时流量监控(网络延迟、访问量、成功率)和历史数据统计、汇总和历史数据分析等功能。
网络检测:主要针对内网或者外网的网络***。如DDoS***的。通过分析异常流量来确定网络***行为。
设备监控:主要针对数据中心内的多种网络设备进行监控。包括路由器,防火墙和交换机等硬件设备,可以通过snmp等协议收集数据。
3.2、存储监控
存储性能监控方面:存储通常监控块的读写速率,IOPS。读写延迟,磁盘用量等;文件存储通常监控文件系统inode。读写速度、目录权限等。
存储系统监控方面:不同的存储系统有不同的指标,例如,对于ceph存储需要监控OSD, MON的运行状态,各种状态pg的数量以及集群IOPS等信息。
存储设备监控方面:对于构建在x86服务器上的存储设备,设备监控通过每个存储节点上的采集器统一收集磁盘、SSD、网卡等设备信息;存储厂商以黑盒方式提供商业存储设备,通常自带监控功能,可监控设备的运行状态,性能和容量的。
3.3、服务器监控
CPU:涉及整个 CPU 的使用量、用户态百分比、内核态百分比,每个 CPU 的使用量、等待队列长度、I/O 等待百分比、CPU 消耗最多的进程、上下文切换次数、缓存命中率等。
内存:涉及内存的使用量、剩余量、内存占用最高的进程、交换分区大小、缺页异常等。
网络 I/O:涉及每个网卡的上行流量、下行流量、网络延迟、丢包率等。
磁盘 I/O:涉及硬盘的读写速率、IOPS、磁盘用量、读写延迟等。
3.4、中间件监控
消息中间件: RabbitMQ、Kafka
Web 服务中间件:Tomcat、Jetty
缓存中间件:Redis、Memcached
数据库中间件:MySQL、PostgreSQL
3.5、应用程序监控(APM)
APM主要是针对应用程序的监控,包括应用程序的运行状态监控,性能监控,日志监控及调用链跟踪等。调用链跟踪是指追踪整个请求过程(从用户发送请求,通常指浏览器或者应用客户端)到后端API服务以及API服务和关联的中间件,或者其他组件之间的调用,构建出一个完整的调用拓扑结构,不仅如此,APM 还可以监控组件内部方法的调用层次(Controller–>service–>Dao)获取每个函数的执行耗时,从而为性能调优提供数据支撑。




