暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

openGauss每日一练第21天 | 学习心得体会【少安】

原创 严少安 2021-12-21
917

学习目标

学习openGauss存储模型

  • 行存和列存

行存储是指将表按行存储到硬盘分区上,列存储是指将表按列存储到硬盘分区上。默认情况下,创建的表为行存储。
行、列存储模型各有优劣,通常用于TP场景的数据库,默认使用行存储,仅对执行复杂查询且数据量大的AP场景时,才使用列存储

课程学习

连接数据库

#第一次进入等待15秒 #数据库启动中... su - omm gsql -r
  1. 创建行存表
CREATE TABLE test_t1 ( col1 CHAR(2), col2 VARCHAR2(40), col3 NUMBER );
  • 压缩属性为no
\d+ test_t1 insert into test_t1 select col1, col2, col3 from (select generate_series(1, 100000) as key, repeat(chr(int4(random() * 26) + 65), 2) as col1, repeat(chr(int4(random() * 26) + 65), 30) as col2, (random() * (10^4))::integer as col3);
  1. 创建列存表
CREATE TABLE test_t2 ( col1 CHAR(2), col2 VARCHAR2(40), col3 NUMBER ) WITH (ORIENTATION = COLUMN);
  • 压缩属性为low
\d+ test_t2;
  • 插入和行存表相同的数据
insert into test_t2 select * from test_t1;
  1. 占用空间对比
\d+
  1. 对比读取一列的速度
analyze VERBOSE test_t1; analyze VERBOSE test_t2;
  • 列存表时间少于行存表
explain analyze select distinct col1 from test_t1; explain analyze select distinct col1 from test_t2;
  1. 对比插入一行的速度
  • 行存表时间少于列存表
explain analyze insert into test_t1 values('x', 'xxxx', '123'); explain analyze insert into test_t2 values('x', 'xxxx', '123');
  1. 清理数据
drop table test_t1; drop table test_t2;

课程作业

  1. 创建行存表和列存表,并批量插入10万条数据(行存表和列存表数据相同)
    需要自己建表!!
  2. 对比行存表和列存表空间大小
  3. 对比查询一列和插入一行的速度
  4. 清理数据
-- 1.1. create table tbl_1 ( col1 char(2), col2 varchar2(40), col3 number ); insert into tbl_1 select col1, col2, col3 from (select generate_series(1, 100000) as key, repeat(chr(int4(random() * 26) + 65), 2) as col1, repeat(chr(int4(random() * 26) + 65), 30) as col2, (random() * (10^4))::integer as col3); -- 1.2. create table tbl_2 ( col1 char(2), col2 varchar2(40), col3 number ) with (orientation = column); insert into tbl_2 select * from tbl_1; -- 2. \d+ omm=# \d+ List of relations Schema | Name | Type | Owner | Size | Storage | Description --------+-------+-------+-------+---------+------------------------------------- -+------------- public | tbl_1 | table | omm | 6760 kB | {orientation=row,compression=no} | public | tbl_2 | table | omm | 1112 kB | {orientation=column,compression=low} | (2 rows) -- 3. -- select analyze VERBOSE tbl_1; analyze VERBOSE tbl_2; explain analyze select distinct col1 from tbl_1; explain analyze select distinct col1 from tbl_2; omm=# analyze VERBOSE tbl_1; INFO: analyzing "public.tbl_1"(gaussdb pid=1) INFO: ANALYZE INFO : "tbl_1": scanned 841 of 841 pages, containing 100000 live rows and 0 dead rows; 30000 rows in sample, 100000 estimated total rows(gaussdb pid=1) ANALYZE omm=# analyze VERBOSE tbl_2; INFO: analyzing "public.tbl_2"(gaussdb pid=1) INFO: ANALYZE INFO : estimate total rows of "pg_delta_16417": scanned 0 pages of total 0 pages with 1 retry times, containing 0 live rows and 0 dead rows, estimated 0 total rows(gaussdb pid=1) INFO: ANALYZE INFO : "tbl_2": scanned 2 of 2 cus, sample 30000 rows, estimated total 100000 rows(gaussdb pid=1) ANALYZE omm=# omm=# explain analyze select distinct col1 from tbl_1; QUERY PLAN -------------------------------------------------------------------------------- ----------------------------------- HashAggregate (cost=2091.00..2091.27 rows=27 width=3) (actual time=46.958..46.961 rows=27 loops=1) Group By Key: col1 -> Seq Scan on tbl_1 (cost=0.00..1841.00 rows=100000 width=3) (actual time=0.010..21.116 rows=100000 loops=1) Total runtime: 47.018 ms (4 rows) omm=# omm=# explain analyze select distinct col1 from tbl_2; QUERY PLAN -------------------------------------------------------------------------------- ------------------------------------------ Row Adapter (cost=1008.27..1008.27 rows=27 width=3) (actual time=10.205..10.20 8 rows=27 loops=1) -> Vector Sonic Hash Aggregate (cost=1008.00..1008.27 rows=27 width=3) (actual time=10.201..10.201 rows=27 loops=1) Group By Key: col1 -> CStore Scan on tbl_2 (cost=0.00..758.00 rows=100000 width=3) (actual time=0.080..0.713 ows=100000 loops=1) Total runtime: 10.318 ms (5 rows) -- insert explain analyze insert into tbl_1 values('a', 'abc', '12345'); explain analyze insert into tbl_2 values('a', 'abc', '12345'); omm=# explain analyze insert into tbl_1 values('a', 'abc', '12345'); QUERY PLAN -------------------------------------------------------------------------------- ------------- [Bypass] Insert on tbl_1 (cost=0.00..0.01 rows=1 width=0) (actual time=0.073..0.074 rows=1 loops=1) -> Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.001 rows=1 loops=1) Total runtime: 0.265 ms (4 rows) omm=# explain analyze insert into tbl_2 values('a', 'abc', '12345'); QUERY PLAN -------------------------------------------------------------------------------- --------------- Insert on tbl_2 (cost=0.00..0.01 rows=1 width=0) (actual time=19.645..19.648 rows=1 loops=1) -> Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.002 rows=1 loops=1) Total runtime: 20.271 ms (3 rows) -- 4. drop table tbl_1; drop table tbl_2;

21_2.jpg
21_1.jpg

学习心得

本节重点知识点:
规划存储模型
行存表
列存表

参考文档

openGauss每日一练 | by 少安 | 汇总


松鼠镇楼,按时打卡
songshu1.jpg

最后修改时间:2022-05-18 09:07:12
「喜欢这篇文章,您的关注和赞赏是给作者最好的鼓励」
关注作者
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文章的来源(墨天轮),文章链接,文章作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

文章被以下合辑收录

评论