openGauss每日一练第21天|《学习openGauss存储模型-行存和列存》学习心得体会和课后练习
学习openGauss存储模型-行存和列存
行存储是指将表按行存储到硬盘分区上,列存储是指将表按列存储到硬盘分区上。默认情况下,创建的表为行存储。
行、列存储模型各有优劣,通常用于TP场景的数据库,默认使用行存储,仅对执行复杂查询且数据量大的AP场景时,才使用列存储
课程学习
连接数据库
#第一次进入等待15秒
#数据库启动中...
su - omm
gsql -r
1.创建行存表
CREATE TABLE test_t1
(
col1 CHAR(2),
col2 VARCHAR2(40),
col3 NUMBER
);
–压缩属性为no
\d+ test_t1
insert into test_t1 select col1, col2, col3 from (select generate_series(1, 100000) as key, repeat(chr(int4(random() * 26) + 65), 2) as col1, repeat(chr(int4(random() * 26) + 65), 30) as col2, (random() * (10^4))::integer as col3);
omm=# \d+ test_t1
Table "public.test_t1"
Column | Type | Modifiers | Storage | Stats target | Description
--------+-----------------------+-----------+----------+--------------+-------------
col1 | character(2) | | extended | |
col2 | character varying(40) | | extended | |
col3 | numeric | | main | |
Has OIDs: no
Options: orientation=row, compression=no
2.创建列存表
CREATE TABLE test_t2
(
col1 CHAR(2),
col2 VARCHAR2(40),
col3 NUMBER
)
WITH (ORIENTATION = COLUMN);
–压缩属性为low
\d+ test_t2;
–插入和行存表相同的数据
insert into test_t2 select * from test_t1;
3.占用空间对比
\d+
omm=# \d+
List of relations
Schema | Name | Type | Owner | Size | Storage | Descripti
on
--------+---------+-------+-------+---------+--------------------------------------+----------
---
public | test_t1 | table | omm | 6760 kB | {orientation=row,compression=no} |
public | test_t2 | table | omm | 1112 kB | {orientation=column,compression=low} |
(2 rows)
4.对比读取一列的速度
analyze VERBOSE test_t1;
analyze VERBOSE test_t2;
–列存表时间少于行存表
explain analyze select distinct col1 from test_t1;
explain analyze select distinct col1 from test_t2;
omm=# explain analyze select distinct col1 from test_t1;
QUERY PLAN
----------------------------------------------------------------------------------------------
-----------------------
HashAggregate (cost=2091.00..2091.27 rows=27 width=3) (actual time=51.640..51.646 rows=27 lo
ops=1)
Group By Key: col1
-> Seq Scan on test_t1 (cost=0.00..1841.00 rows=100000 width=3) (actual time=0.012..24.79
4 rows=100000 loops=1)
Total runtime: 51.700 ms
(4 rows)
omm=# explain analyze select distinct col1 from test_t2;
QUERY PLAN
----------------------------------------------------------------------------------------------
------------------------------
Row Adapter (cost=1008.27..1008.27 rows=27 width=3) (actual time=4.226..4.228 rows=27 loops=
1)
-> Vector Sonic Hash Aggregate (cost=1008.00..1008.27 rows=27 width=3) (actual time=4.224
..4.224 rows=27 loops=1)
Group By Key: col1
-> CStore Scan on test_t2 (cost=0.00..758.00 rows=100000 width=3) (actual time=0.03
0..0.302 rows=100000 loops=1)
Total runtime: 4.327 ms
(5 rows)
5.对比插入一行的速度
–行存表时间少于列存表
explain analyze insert into test_t1 values('x', 'xxxx', '123');
explain analyze insert into test_t2 values('x', 'xxxx', '123');
6.清理数据
drop table test_t1;
drop table test_t2;
课程作业
1.创建行存表和列存表,并批量插入10万条数据(行存表和列存表数据相同)
create table test_t1 (id int,name text);
CREATE TABLE test_t2
(
id int,
name text
)
WITH (ORIENTATION = COLUMN);
insert into test_t1 SELECT id,name from (select generate_series(1,100000) as key, (random()*(6^2))::integer as id,repeat(chr(int4(random()*26)+65),4)) as name);
insert into test_t2 select * from test_t1;
analyze VERBOSE test_t1;
analyze VERBOSE test_t2;
omm=# analyze VERBOSE test_t1;
analyze VERBOSE test_t2;INFO: analyzing "public.test_t1"(gaussdb pid=1)
INFO: ANALYZE INFO : "test_t1": scanned 541 of 541 pages, containing 100000 live rows and 0 dead rows; 30000 rows in sample, 100000 estimated total rows(gaussdb pid=1)
ANALYZE
omm=#
INFO: analyzing "public.test_t2"(gaussdb pid=1)
INFO: ANALYZE INFO : estimate total rows of "pg_delta_16433": scanned 0 pages of total 0 pages with 1 retry times, containing 0 live rows and 0 dead rows, estimated 0 total rows(gaussdb pid=1)
INFO: ANALYZE INFO : "test_t2": scanned 2 of 2 cus, sample 30000 rows, estimated total 100000 rows(gaussdb pid=1)
ANALYZE
2.对比行存表和列存表空间大小
omm=# \d+
List of relations
Schema | Name | Type | Owner | Size | Storage | Descripti
on
--------+---------+-------+-------+---------+--------------------------------------+----------
---
public | test_t1 | table | omm | 4360 kB | {orientation=row,compression=no} |
public | test_t2 | table | omm | 440 kB | {orientation=column,compression=low} |
(2 rows)
3.对比查询一列和插入一行的速度
explain analyze insert into test_t1 values(12 , 'xxxx');
explain analyze insert into test_t2 values(12, 'xxxx');
omm=# explain analyze insert into test_t1 values(12 , 'xxxx');
explain analyze insert into test_t2 values(12, 'xxxx'); QUERY PLAN
----------------------------------------------------------------------------------------------
-
[Bypass]
Insert on test_t1 (cost=0.00..0.01 rows=1 width=0) (actual time=0.069..0.070 rows=1 loops=1)
-> Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.001 rows=1 loops=1)
Total runtime: 0.175 ms
(4 rows)
omm=#
QUERY PLAN
----------------------------------------------------------------------------------------------
-
Insert on test_t2 (cost=0.00..0.01 rows=1 width=0) (actual time=0.136..0.137 rows=1 loops=1)
-> Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.002 rows=1 loops=1)
Total runtime: 0.237 ms
(3 rows)
4.清理数据
drop table test_t1;
drop table test_t2;
「喜欢这篇文章,您的关注和赞赏是给作者最好的鼓励」
关注作者
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文章的来源(墨天轮),文章链接,文章作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。




