暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

openGauss每日一练第21天|行存储和列存储

原创 Garen 2021-12-22
732

最后一天的打卡,我们学习行储存与列储存。

行存储是指将表按行存储到硬盘分区上,列存储是指将表按列存储到硬盘分区上。默认情况下,创建的表为行存储。

行、列存储模型各有优劣,通常用于TP场景的数据库,默认使用行存储,仅对执行复杂查询且数据量大的AP场景时,才使用列存储。

暂时还没有接触到复杂查询和数据量大的应用场景,希望早日能接触到。

课程学习

1.创建行存表

CREATE TABLE test_t1 ( col1 CHAR(2), col2 VARCHAR2(40), col3 NUMBER );

–压缩属性为no

\d+ test_t1 insert into test_t1 select col1, col2, col3 from (select generate_series(1, 100000) as key, repeat(chr(int4(random() * 26) + 65), 2) as col1, repeat(chr(int4(random() * 26) + 65), 30) as col2, (random() * (10^4))::integer as col3 );

2.创建列存表

CREATE TABLE test_t2 ( col1 CHAR(2), col2 VARCHAR2(40), col3 NUMBER ) WITH (ORIENTATION = COLUMN);

就在建表的最后加一行就行了。

–压缩属性为low

\d+ test_t2

–插入和行存表相同的数据

insert into test_t2 select * from test_t1;

3.占用空间对比

\d+ public | test_t1 | table | omm | 6760 kB | {orientation=row,compression=no} public | test_t2 | table | omm | 1112 kB | {orientation=column,compression=low}

明显列储存的占用空间更小。

4.对比读取一列的速度

omm=# analyze VERBOSE test_t1; INFO: analyzing "public.test_t1"(gaussdb pid=1) INFO: ANALYZE INFO : "test_t1": scanned 841 of 841 pages, containing 100000 live rows and 0 dead rows; 30000 rows in sample, 100000 estimated total rows(gaussdb pid=1) ANALYZE omm=# analyze VERBOSE test_t2; INFO: analyzing "public.test_t2"(gaussdb pid=1) INFO: ANALYZE INFO : estimate total rows of "pg_delta_16441": scanned 0 pages of total 0 pages with 1 retry times, containing 0 live rows and 0 dead rows, estimated 0 total rows(gaussdb pid=1) INFO: ANALYZE INFO : "test_t2": scanned 2 of 2 cus, sample 30000 rows, estimated total 100000 rows(gaussdb pid=1) ANALYZE

–列存表时间少于行存表

omm=# explain analyze select distinct col1 from test_t1; QUERY PLAN -------------------------------------------------------------------------------------------------------------------- - HashAggregate (cost=2091.00..2091.27 rows=27 width=3) (actual time=51.888..51.892 rows=27 loops=1) Group By Key: col1 -> Seq Scan on test_t1 (cost=0.00..1841.00 rows=100000 width=3) (actual time=0.011..25.021 rows=100000 loops=1) Total runtime: 51.951 ms (4 rows) omm=# explain analyze select distinct col1 from test_t2; QUERY PLAN -------------------------------------------------------------------------------------------------------------------- -------- Row Adapter (cost=1008.27..1008.27 rows=27 width=3) (actual time=4.239..4.242 rows=27 loops=1) -> Vector Sonic Hash Aggregate (cost=1008.00..1008.27 rows=27 width=3) (actual time=4.235..4.236 rows=27 loops= 1) Group By Key: col1 -> CStore Scan on test_t2 (cost=0.00..758.00 rows=100000 width=3) (actual time=0.069..0.337 rows=100000 l oops=1) Total runtime: 4.344 ms (5 rows)

5.对比插入一行的速度

–行存表时间少于列存表

omm=# explain analyze insert into test_t1 values('x', 'xxxx', '123'); QUERY PLAN ----------------------------------------------------------------------------------------------- [Bypass] Insert on test_t1 (cost=0.00..0.01 rows=1 width=0) (actual time=0.072..0.073 rows=1 loops=1) -> Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.001 rows=1 loops=1) Total runtime: 0.177 ms (4 rows) omm=# explain analyze insert into test_t2 values('x', 'xxxx', '123'); QUERY PLAN ----------------------------------------------------------------------------------------------- Insert on test_t2 (cost=0.00..0.01 rows=1 width=0) (actual time=3.024..3.025 rows=1 loops=1) -> Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.002 rows=1 loops=1) Total runtime: 3.122 ms (3 rows)

6.清理数据

drop table test_t1; drop table test_t2;

课程作业

1.创建行存表和列存表,并批量插入10万条数据(行存表和列存表数据相同)

CREATE TABLE test_t3 ( id1 int, id2 int, id3 int ); create table test_t4 (like test_t3) with (orientation = column); insert into test_t3 select id1, id2, id3 from (select generate_series(1, 100000) as key, (random() * (10^2))::int as id1, (random() * (10^3))::int as id2, (random() * (10^4))::int as id3 ); insert into test_t4 select * from test_t3;

2.对比行存表和列存表空间大小

\d+ public | test_t3 | table | omm | 4352 kB | {orientation=row,compression=no} public | test_t4 | table | omm | 536 kB | {orientation=column,compression=low}

明显列存表空间更小。

3.对比查询一列和插入一行的速度

比较插入列的速度,则列存表时间要少于行存表。

omm=# analyze VERBOSE test_t3; INFO: analyzing "public.test_t3"(gaussdb pid=1) INFO: ANALYZE INFO : "test_t3": scanned 541 of 541 pages, containing 100000 live rows and 0 dead rows; 30000 rows in sample, 100000 estimated total rows(gaussdb pid=1) ANALYZE omm=# analyze verbose test_t4; INFO: analyzing "public.test_t4"(gaussdb pid=1) INFO: ANALYZE INFO : estimate total rows of "pg_delta_16460": scanned 0 pages of total 0 pages with 1 retry times, containing 0 live rows and 0 dead rows, estimated 0 total rows(gaussdb pid=1) INFO: ANALYZE INFO : "test_t4": scanned 2 of 2 cus, sample 30000 rows, estimated total 100000 rows(gaussdb pid=1) ANALYZE omm=# explain analyze select distinct col1 from test_t3; QUERY PLAN -------------------------------------------------------------------------------------------------------------------- - HashAggregate (cost=1791.00..1792.01 rows=101 width=4) (actual time=46.334..46.350 rows=101 loops=1) Group By Key: id1 -> Seq Scan on test_t3 (cost=0.00..1541.00 rows=100000 width=4) (actual time=0.015..24.127 rows=100000 loops=1) Total runtime: 46.421 ms (4 rows) omm=# explain analyze select distinct col1 from test_t4; QUERY PLAN -------------------------------------------------------------------------------------------------------------------- -------- Row Adapter (cost=525.01..525.01 rows=101 width=4) (actual time=2.632..2.639 rows=101 loops=1) -> Vector Sonic Hash Aggregate (cost=524.00..525.01 rows=101 width=4) (actual time=2.629..2.629 rows=101 loops= 1) Group By Key: id1 -> CStore Scan on test_t4 (cost=0.00..274.00 rows=100000 width=4) (actual time=0.038..0.417 rows=100000 l oops=1) Total runtime: 2.740 ms (5 rows)

比较插入行的速度,则行存表时间要少于列存表(这里由于都是int所以区别不是很大,存字符串的话差别就大了)

omm=# explain analyze insert into test_t3 values (3, 2, 1); QUERY PLAN ----------------------------------------------------------------------------------------------- [Bypass] Insert on test_t3 (cost=0.00..0.01 rows=1 width=0) (actual time=0.069..0.070 rows=1 loops=1) -> Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.001 rows=1 loops=1) Total runtime: 0.175 ms (4 rows) omm=# explain analyze insert into test_t4 values (3, 2, 1); QUERY PLAN ----------------------------------------------------------------------------------------------- Insert on test_t4 (cost=0.00..0.01 rows=1 width=0) (actual time=0.126..0.127 rows=1 loops=1) -> Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.001 rows=1 loops=1) Total runtime: 0.226 ms (3 rows)

4.清理数据

drop table test_t3; drop table test_t4;
「喜欢这篇文章,您的关注和赞赏是给作者最好的鼓励」
关注作者
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文章的来源(墨天轮),文章链接,文章作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论