学习目标
学习openGauss存储模型-行存和列存
行存储是指将表按行存储到硬盘分区上,列存储是指将表按列存储到硬盘分区上。默认情况下,创建的表为行存储。
行、列存储模型各有优劣,通常用于TP场景的数据库,默认使用行存储,仅对执行复杂查询且数据量大的AP场景时,才使用列存储
课程学习
连接openGauss
#第一次进入等待15秒
#数据库启动中…
su - omm
gsql -r
课后作业
1.创建行存表和列存表,并批量插入10万条数据(行存表和列存表数据相同)
需要自己建表!!
-- 行存表
create table t1
(
id int,
name varchar2(20)
);
\d+ t1
-- 列存表
create table t2
(
id int,
name varchar2(20)
)
with (ORIENTATION = COLUMN)
;
\d+ t2
-- 批量插入10万数据
insert into t1 select id, name from (select generate_series(1, 1000000) as id, repeat(chr(int4(random() * 26) + 65), 2) as name);
select count(*) from t1;
-- 插入t2
insert into t2 select * from t1;
select count(*) from t2;
2.对比行存表和列存表空间大小
\d+
3.对比查询一列和插入一行的速度
-- 收集统计信息
analyze VERBOSE t1;
analyze VERBOSE t2;
-- 对比查询一列的速度
explain analyze select distinct id from t1;
explain analyze select distinct id from t2;
-- 对比插入一行的速度
explain analyze insert into t1 values(2000000, 'name2000000');
explain analyze insert into t2 values(2000000, 'name2000000');
4.清理数据
\d
drop table t1;
drop table t2;
\d
作业执行结果
omm=# -- 行存表
omm=# create table t1
omm-# (
id int,
name varchar2(20)
);
CREATE TABLE
omm=# \d+ t1
Table "public.t1"
Column | Type | Modifiers | Storage | Stats target | Description
--------+-----------------------+-----------+----------+--------------+-------------
id | integer | | plain | | Options: orientation=row, compression=no
omm=#
omm=#
name | character varying(20) | | extended | |
Has OIDs: no
-- 列存表
omm(# create table t2
id int,
name varchar2(20)
)
with (ORIENTATION = COLUMN)
;
CREATE TABLE
omm=# \d+ t2
Table "public.t2"
Column | Type | Modifiers | Storage | Stats target | Description
--------+-----------------------+-----------+----------+--------------+-------------
id | integer | | plain | |
name | character varying(20) | | extended | |
Has OIDs: no
Options: orientation=column, compression=low
omm=# omm=#
-- 批量插入10万数据
omm=# insert into t1 select id, name from (select generate_series(1, 1000000) as id, repeat(chr(int4(random() * 26) + 65), 2) as name);
INSERT 0 1000000
omm=#
omm=# select count(*) from t1;
count
---------
1000000
(1 row)
omm=#
omm=# -- 插入t2
omm=# insert into t2 select * from t1;
INSERT 0 1000000
omm=# select count(*) from t2;
count
---------
1000000
(1 row)
omm=#
omm=#
omm=# \d+
List of relations
Schema | Name | Type | Owner | Size | Storage | Description
--------+------+-------+-------+---------+--------------------------------------+-------------
public | t1 | table | omm | 35 MB | {orientation=row,compression=no} |
public | t2 | table | omm | 4968 kB | {orientation=column,compression=low} |
(2 rows)
omm=#
omm=# -- 收集统计信息
omm=# analyze VERBOSE t1;
INFO: analyzing "public.t1"(gaussdb pid=1)
INFO: ANALYZE INFO : "t1": scanned 4425 of 4425 pages, containing 1000000 live rows and 0 dead rows; 30000 rows in sample, 1000000 estimated total rows(gaussdb pid=1)
ANALYZE
omm=# analyze VERBOSE t2;
INFO: analyzing "public.t2"(gaussdb pid=1)
INFO: ANALYZE INFO : estimate total rows of "pg_delta_16448": scanned 0 pages of total 0 pages with 1 retry times, containing 0 live rows and 0 dead rows, estimated 0 total rows(gaussdb pid=1)
INFO: ANALYZE INFO : "t2": scanned 17 of 17 cus, sample 30000 rows, estimated total 1000000 rows(gaussdb pid=1)
ANALYZE
omm=#
omm=# -- 对比查询一列的速度
omm=# explain analyze select distinct id from t1;
QUERY PLAN
-------------------------------------------------------------------------------------------------
-------------------
HashAggregate (cost=16925.00..26925.00 rows=1000000 width=4) (actual time=681.859..1024.240 row
s=1000000 loops=1)
Group By Key: id
-> Seq Scan on t1 (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.025..287.878 row
s=1000000 loops=1)
Total runtime: 1135.763 ms
(4 rows)
omm=# explain analyze select distinct id from t2;
Group By Key: id
-> CStore Scan on t2 (cost=0.00..1867.00 rows=1000000 width=4) (actual time=0.069..4.5
84 rows=1000000 loops=1)
Total runtime: 299.823 ms
(5 rows)
QUERY PLAN
-------------------------------------------------------------------------------------------------
-------------------------------------
Row Adapter (cost=14367.00..14367.00 rows=1000000 width=4) (actual time=116.564..226.820 rows=1
000000 loops=1)
-> Vector Sonic Hash Aggregate (cost=4367.00..14367.00 rows=1000000 width=4) (actual time=11
6.558..131.607 rows=1000000 loops=1)omm=#
omm=# -- 对比插入一行的速度
omm=# explain analyze insert into t1 values(2000000, 'name2000000');
QUERY PLAN
------------------------------------------------------------------------------------------
[Bypass]
Insert on t1 (cost=0.00..0.01 rows=1 width=0) (actual time=0.112..0.113 rows=1 loops=1)
-> Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.001 rows=1 loops=1)
Total runtime: 0.175 ms
(4 rows)
omm=# explain analyze insert into t2 values(2000000, 'name2000000');
QUERY PLAN
------------------------------------------------------------------------------------------
Insert on t2 (cost=0.00..0.01 rows=1 width=0) (actual time=0.150..0.150 rows=1 loops=1)
-> Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.000..0.000 rows=1 loops=1)
Total runtime: 0.207 ms
(3 rows)
omm=#
omm=# omm=# \d
List of relations
Schema | Name | Type | Owner | Storage
--------+------+-------+-------+--------------------------------------
public | t1 | table | omm | {orientation=row,compression=no}
public | t2 | table | omm | {orientation=column,compression=low}
(2 rows)
omm=# drop table t1;
DROP TABLE
omm=# drop table t2;
DROP TABLE
omm=# \d
No relations found.
最后修改时间:2021-12-22 14:44:50
「喜欢这篇文章,您的关注和赞赏是给作者最好的鼓励」
关注作者
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文章的来源(墨天轮),文章链接,文章作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。




