暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

PostgreSql Postgresql 监控你说了不算,谁说了算 ? (5 整理的一些脚本)

AustinDatabases 2020-07-13
1008

一写就写到了第五期,有点写连续剧的味道,可能会有第六期,我想是,今天的内容并不是某些工具,其实工具也是根据数据库的原理,通过各种方式获得数据。那怎么通过PG中的系统表来获得数据就是这期的重点。

当然只给脚本,那就有点LOW ,首先要告诉读者,这个到底要做什么能给你什么信息,解决什么问题。

以下的脚本均在PG11中使用,或验证。

1 内存命中 cache hit

关注这个点是因为,你系统中正在运行的表,在查询中内存的命中率,主要考虑这个点要考虑 1 内存是否存在短缺的可能, 2 你的查询的方式是否合理,(说白了就是你读取这个表的SQL 是否有垃圾的可能),一软一硬。

SELECT
'index hit rate' AS name,
(sum(idx_blks_hit)) / nullif(sum(idx_blks_hit + idx_blks_read),0) AS ratio
FROM pg_statio_user_indexes
UNION ALL
SELECT
'table hit rate' AS name,
sum(heap_blks_hit) / nullif(sum(heap_blks_hit) + sum(heap_blks_read),0) AS ratio
FROM pg_statio_user_tables;

2 关于表中的INDEX 的命中率

SELECT relname,
CASE idx_scan
WHEN 0 THEN NULL
ELSE round(100.0 * idx_scan / (seq_scan + idx_scan), 5)
END percent_of_times_index_used,
n_live_tup rows_in_table
FROM
pg_stat_user_tables
ORDER BY
n_live_tup DESC;

在查询中基本上都愿意使用INDEX 来进行相关的查询,那表中的查询使用INDEX 索引和不使用之间的时间比是多少,通过这样的脚本可以进一步分析哪些表可能存在缺少搜索的情况。

3  检查数据库中那些索引没有被使用过,这是一个经常需要问的问题,当然通过脚本获取的数据后,到底这个索引需要不需要,也是要在分析的,不能由于这个索引被使用的次数过小,就直接将他删除。

SELECT
schemaname || '.' || relname AS table,
indexrelname AS index,
pg_size_pretty(pg_relation_size(i.indexrelid)) AS index_size,
idx_scan as index_scans
FROM pg_stat_user_indexes ui
JOIN pg_index i ON ui.indexrelid = i.indexrelid
WHERE NOT indisunique
AND idx_scan < 50
AND pg_relation_size(relid) > 5 * 8192
ORDER BY pg_relation_size(i.indexrelid) / nullif(idx_scan, 0) DESC NULLS FIRST,
pg_relation_size(i.indexrelid) DESC;

4 一个表的大小,在PG中对于字符的字段是有一个toast 的概念的,要关注toast在每个表中占有多大的空间,可以通过下面的脚本来进行查看

SELECT c.relname AS name,
pg_size_pretty(pg_total_relation_size(c.oid)) AS size
FROM pg_class c
LEFT JOIN pg_namespace n ON (n.oid = c.relnamespace)
WHERE n.nspname NOT IN ('pg_catalog', 'information_schema')
AND n.nspname !~ '^pg_toast'
AND c.relkind='r'
ORDER BY pg_total_relation_size(c.oid) DESC;

5 查询当前系统中语句的状态,包含锁的状态,这个语句可能是会经常被使用的,如果当前系统例如出现性能,或应用系统的问题,首先就要查看当前语句运行的情况。
SELECT count(pg_stat_activity.pid) AS number_of_queries,       substring(trim(LEADING                      FROM regexp_replace(pg_stat_activity.query, '[\n\r]+'::text,                       ' '::text, 'g'::text))                 FROM 0                 FOR 200) AS query_name,       max(age(CURRENT_TIMESTAMP, query_start)) AS max_wait_time,       wait_event,       usename,       locktype,       mode,       granted  FROM pg_stat_activity  LEFT JOIN pg_locks ON pg_stat_activity.pid = pg_locks.pid  WHERE query != '<IDLE>'    AND query NOT ILIKE '%pg_%' AND query NOT ILIKE '%application_name%' AND query NOT ILIKE '%inet%'    AND age(CURRENT_TIMESTAMP, query_start) > '5 milliseconds'::interval  GROUP BY query_name,           wait_event,           usename,           locktype,           mode,           granted  ORDER BY max_wait_time DESC;

6 在查询中表读取在内存中的命中的数据块是一个需要被关注的参数,下面的脚本中可以看到每个表被读取时,在磁盘中读取和在内存中直接读取之间的数字和比率。

SELECT relname AS "relation",       heap_blks_read AS heap_read,       heap_blks_hit AS heap_hit,       ( (heap_blks_hit*100) / NULLIF((heap_blks_hit + heap_blks_read), 0)) AS ratioFROM pg_statio_user_tables;

7 表膨胀的问题是PG中需要关注和注意的,所以经常监控膨胀率是一个很重要的问题,通过下面的脚本

WITH constants AS (
SELECT current_setting('block_size')::numeric AS bs, 23 AS hdr, 4 AS ma
), bloat_info AS (
SELECT
ma,bs,schemaname,tablename,
(datawidth+(hdr+ma-(case when hdr%ma=0 THEN ma ELSE hdr%ma END)))::numeric AS datahdr,
(maxfracsum*(nullhdr+ma-(case when nullhdr%ma=0 THEN ma ELSE nullhdr%ma END))) AS nullhdr2
FROM (
SELECT
schemaname, tablename, hdr, ma, bs,
SUM((1-null_frac)*avg_width) AS datawidth,
MAX(null_frac) AS maxfracsum,
hdr+(
SELECT 1+count(*)/8
FROM pg_stats s2
WHERE null_frac<>0 AND s2.schemaname = s.schemaname AND s2.tablename = s.tablename
) AS nullhdr
FROM pg_stats s, constants
GROUP BY 1,2,3,4,5
) AS foo
), table_bloat AS (
SELECT
schemaname, tablename, cc.relpages, bs,
CEIL((cc.reltuples*((datahdr+ma-
(CASE WHEN datahdr%ma=0 THEN ma ELSE datahdr%ma END))+nullhdr2+4))/(bs-20::float)) AS otta
FROM bloat_info
JOIN pg_class cc ON cc.relname = bloat_info.tablename
JOIN pg_namespace nn ON cc.relnamespace = nn.oid AND nn.nspname = bloat_info.schemaname AND nn.nspname <> 'information_schema'
), index_bloat AS (
SELECT
schemaname, tablename, bs,
COALESCE(c2.relname,'?') AS iname, COALESCE(c2.reltuples,0) AS ituples, COALESCE(c2.relpages,0) AS ipages,
COALESCE(CEIL((c2.reltuples*(datahdr-12))/(bs-20::float)),0) AS iotta -- very rough approximation, assumes all cols
FROM bloat_info
JOIN pg_class cc ON cc.relname = bloat_info.tablename
JOIN pg_namespace nn ON cc.relnamespace = nn.oid AND nn.nspname = bloat_info.schemaname AND nn.nspname <> 'information_schema'
JOIN pg_index i ON indrelid = cc.oid
JOIN pg_class c2 ON c2.oid = i.indexrelid
)
SELECT
type, schemaname, object_name, bloat, pg_size_pretty(raw_waste) as waste
FROM
(SELECT
'table' as type,
schemaname,
tablename as object_name,
ROUND(CASE WHEN otta=0 THEN 0.0 ELSE table_bloat.relpages/otta::numeric END,1) AS bloat,
CASE WHEN relpages < otta THEN '0' ELSE (bs*(table_bloat.relpages-otta)::bigint)::bigint END AS raw_waste
FROM
table_bloat
UNION
SELECT
'index' as type,
schemaname,
tablename || '::' || iname as object_name,
ROUND(CASE WHEN iotta=0 OR ipages=0 THEN 0.0 ELSE ipages/iotta::numeric END,1) AS bloat,
CASE WHEN ipages < iotta THEN '0' ELSE (bs*(ipages-iotta))::bigint END AS raw_waste
FROM
index_bloat) bloat_summary
ORDER BY raw_waste DESC, bloat DESC;

8 在PG 中一个数据块系统中有没有进行autovacuum 什么时候做的,最后一次分析是什么时间,等等都是重要的信息,一个系统的管理或者DBA是需要知晓这些事情,并根据这些信息来进行后续的操作等等。

WITH table_opts AS (
SELECT
pg_class.oid, relname, nspname, array_to_string(reloptions, '') AS relopts
FROM
pg_class INNER JOIN pg_namespace ns ON relnamespace = ns.oid
), vacuum_settings AS (
SELECT
oid, relname, nspname,
CASE
WHEN relopts LIKE '%autovacuum_analyze_threshold%'
THEN substring(relopts, '.*autovacuum_analyze_threshold=([0-9.]+).*')::integer
ELSE current_setting('autovacuum_analyze_threshold')::integer
END AS autovacuum_analyze_threshold,
CASE
WHEN relopts LIKE '%autovacuum_analyze_scale_factor%'
THEN substring(relopts, '.*autovacuum_analyze_scale_factor=([0-9.]+).*')::real
ELSE current_setting('autovacuum_analyze_scale_factor')::real
END AS autovacuum_analyze_scale_factor
FROM
table_opts
)
SELECT
vacuum_settings.relname AS table,
to_char(psut.last_analyze, 'YYYY-MM-DD HH24:MI') AS last_analyze,
to_char(psut.last_autoanalyze, 'YYYY-MM-DD HH24:MI') AS last_autoanalyze,
to_char(pg_class.reltuples, '9G999G999G999') AS rowcount,
to_char(pg_class.reltuples / NULLIF(pg_class.relpages, 0), '999G999.99') AS rows_per_page,
to_char(autovacuum_analyze_threshold
+ (autovacuum_analyze_scale_factor::numeric * pg_class.reltuples), '9G999G999G999') AS autovacuum_analyze_threshold,
CASE
WHEN autovacuum_analyze_threshold + (autovacuum_analyze_scale_factor::numeric * pg_class.reltuples) < psut.n_dead_tup
THEN 'yes'
END AS will_analyze
FROM
pg_stat_user_tables psut INNER JOIN pg_class ON psut.relid = pg_class.oid
INNER JOIN vacuum_settings ON pg_class.oid = vacuum_settings.oid
ORDER BY 1

OK 今天就先说到这里

文章转载自AustinDatabases,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论