暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

flink on k8s jobmanager HA 完全部署

大数据启示录 2022-02-15
501

本⽂档共分为打包镜像和k8s 部署两部分。


镜像打包


1: 编辑镜像,本部分集成了hdfs 相关配置:

下载hadoop 依赖压缩包

mwget https://archive.apache.org/dist/hadoop/common/hadoop-2.8.3/hadoop-2.8.3.tar.gz

解压hadoop 压缩包

解压后进⼊到etc/hadoop/⽬录下并替换掉core-site.xml,hdfs-site.xml,yarnsite.xml,mapred-site.xml⽂件。

若有需要,可以在lib 包下添加相应jar包,完成后打包成.tar.gz⽂件。

下载其它安装包,需在Dockerfile同级⽬录下:如

编辑Dockerfile⽂件:

###############################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################
FROM centos:7
# Install dependencies
RUN set -ex; \
yum -y install wget; \
cd /etc/yum.repos.d/; \
mv CentOS-Base.repo CentOS-Base.repo.bak; \
wget http://mirrors.aliyun.com/repo/Centos-7.repo; \
yum clean all; \
yum makecache; \
yum -y update; \
yum install -y bzip2 gettext make autogen autoconf net-tools gcc-c++ telnet;


# Prepare environment
ENV FLINK_HOME=/opt/flink
ENV PATH=$FLINK_HOME/bin:$PATH
RUN set -ex; \
mkdir $FLINK_HOME;

RUN groupadd --system --gid=9999 flink && \
useradd --system --home-dir $FLINK_HOME --uid=9999 --gid=flink flink

# Install gosu
COPY ./gosu.tgz /opt/gosu/gosu.tgz
RUN set -ex; \
cd /opt/gosu; \
tar -xf /opt/gosu/gosu.tgz --strip-components=1 \
&& /opt/gosu/gosu.install.sh \
&& rm -fr /opt/gosu

# Install jemalloc-5.2.1.tar.gz
COPY ./jemalloc-5.2.1.tar.gz /opt/jemolloc/jemalloc-5.2.1.tar.gz
RUN set -ex; \
cd /opt/jemolloc; \
tar -xf /opt/jemolloc/jemalloc-5.2.1.tar.gz --strip-components=1 \
&& ./configure --prefix=/usr/lib/x86_64-linux-gnu \
&& make \
&& make install

# Install jdk-8
RUN set -ex; \
mkdir /usr/java;

ENV JAVA_HOME=/usr/java/
ENV PATH=$JAVA_HOME/bin:$PATH

COPY ./jdk1.8.0_181-cloudera.tgz /tmp/jdk.tgz
RUN set -ex; \
cd /usr/java; \
tar -xf /tmp/jdk.tgz --strip-components=1; \
rm /tmp/jdk.tgz; \
\
chown -R flink:flink .;

# Install Flink
WORKDIR $FLINK_HOME
COPY ./flink-1.13.1_dz.tar.gz flink.tgz // 此处对应的flink-1.13.1_dz.tar.gz 需要安装包名字⼀致


RUN set -ex; \
tar -xf flink.tgz --strip-components=1; \
rm flink.tgz; \
\
chown -R flink:flink .;

# Prepare environment
ENV HADOOP_HOME=/opt/hadoop
ENV PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH


COPY hadoop-2.8.3.tar.gz hadoop-2.8.3.tgz
RUN set -ex; \
tar -xf hadoop-2.8.3.tgz --strip-components=1; \
rm hadoop-2.8.3.tgz; \
chown -R flink:flink .;

# add hadoop conf or jar
COPY flink-shaded-hadoop-2-uber-2.8.3-10.0.jar /opt/flink/lib
COPY hadoop-client-2.8.3.jar /opt/flink/lib
COPY hadoop-common-2.8.3.jar /opt/flink/lib
COPY hadoop-hdfs-2.8.3.jar /opt/flink/lib
COPY hadoop-mapreduce-client-common-2.8.3.jar /opt/flink/lib
COPY hadoop-mapreduce-client-core-2.8.3.jar /opt/flink/lib
COPY hadoop-mapreduce-client-jobclient-2.8.3.jar /opt/flink/lib


# Configure container
COPY docker-entrypoint.sh /
#ENTRYPOINT ["/docker-entrypoint.sh"]
#CMD /docker-entrypoint.sh jobmanager
EXPOSE 6123 8081

打包镜像:

docker build -t 镜像名:版本号 .             如:flink_k8s:v1.13 .
docker iamges (查看镜像)
docker run -it flink_k8s:v1.13                (运⾏⼀个容器)
docker exec -u 0 -it 容器名 /bin/bash            以root权限
...

推送/拉取镜像

docker login 仓库地址                                 登陆镜像仓库
docker tag 镜像名:版本号 仓库地址/namespace/镜像名:版本号 打tag
docker push 镜像地址/namespace/镜像名:版本号 推送镜像
docker pull 仓库地址/namespace/镜像名:版本号            (拉取镜像)
docker logout 镜像地址                                登出镜像仓库


flink on k8s JM HA yaml配置


配置⽬录结构如下:

1:对于 JobManager 和 TaskManager 运⾏过程中需要的⼀些配置⽂件,如:flink-conf.yaml、hdfssite.xml、core-site.xml,log4j-console.properties....,可以通过flink-configuration-configmap.yaml⽂件将它们定义为 ConfigMap 来实现配置的传递和读取。如果使⽤默认配置,这⼀步则不需要。模版如下:

apiVersion: v1
kind: ConfigMap
metadata:
name: flink-config
namespace: sd-bigdata
labels:
app: flink
data:       //挂载了两个配置⽂件(flink-conf.yaml,log4j-console.properties)
flink-conf.yaml: |+
jobmanager.rpc.address: flink-jobmanager
taskmanager.numberOfTaskSlots: 2
blob.server.port: 6124
jobmanager.rpc.port: 6123
taskmanager.rpc.port: 6122
queryable-state.proxy.ports: 6125
jobmanager.memory.process.size: 1600m
taskmanager.memory.process.size: 20480m
taskmanager.numberOfTaskSlots: 18
parallelism.default: 1
    classloader.resolve-order: parent-first
# classloader.resolve-order: 当加载⽤户代码类时,Flink使⽤child-first的
# ClassLoader还是parent-first ClassLoader。可以是parent-first 或 child-first中的⼀个
# 值。(默认:child-first)---->建议使⽤parent-first。


## ha 相关配置参数
    kubernetes.cluster-id: sdai-cluster-test     
    # 不⽀持_,*,.等符号,建议使⽤-
high-availability: org.apache.flink.kubernetes.highavailability.KubernetesHaServicesFactory
# hdfs ⽬录
high-availability.storageDir: hdfs://sd-cluster-03:8020/flink/recovery
restart-strategy: fixed-delay
restart-strategy.fixed-delay.attempts: 10

# chekpoin 相关参数
state.backend: filesystem
# hdfs checkpoint
state.checkpoints.dir: hdfs://sd-cluster-03:8020/data/flink/checkpoints




log4j-console.properties: |+
# This affects logging for both user code and Flink
rootLogger.level = INFO
rootLogger.appenderRef.console.ref = ConsoleAppender
rootLogger.appenderRef.rolling.ref = RollingFileAppender


# Uncomment this if you want to _only_ change Flink's logging
#logger.flink.name = org.apache.flink
#logger.flink.level = INFO


# The following lines keep the log level of common libraries/connectors on
# log level INFO. The root logger does not override this. You have to manually
# change the log levels here.
logger.akka.name = akka
logger.akka.level = INFO
logger.kafka.name= org.apache.kafka
logger.kafka.level = INFO
logger.hadoop.name = org.apache.hadoop
logger.hadoop.level = INFO
logger.zookeeper.name = org.apache.zookeeper
logger.zookeeper.level = INFO


# Log all infos to the console
appender.console.name = ConsoleAppender
appender.console.type = CONSOLE
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n


# Log all infos in the given rolling file
appender.rolling.name = RollingFileAppender
appender.rolling.type = RollingFile
appender.rolling.append = false
appender.rolling.fileName = ${sys:log.file}
appender.rolling.filePattern = ${sys:log.file}.%i
appender.rolling.layout.type = PatternLayout
appender.rolling.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n
appender.rolling.policies.type = Policies
appender.rolling.policies.size.type = SizeBasedTriggeringPolicy
appender.rolling.policies.size.size=100MB
appender.rolling.strategy.type = DefaultRolloverStrategy
appender.rolling.strategy.max = 10


# Suppress the irrelevant (wrong) warnings from the Netty channel handler
logger.netty.name = org.apache.flink.shaded.akka.org.jboss.netty.channel.DefaultChannelPipeline
    logger.netty.level = OFF

2:jobmanager-rest-service.yaml. 可选服务,将 jobmanager rest 端⼝公开为公共 Kubernetes 节点的端⼝。

apiVersion: v1
kind: Service
metadata:
name: flink-jobmanager-rest
namespace: sd-bigdata
spec:
type: NodePort
ports:
- name: rest
port: 8081
targetPort: 8081
nodePort: 30081 # web ui访问端⼝
selector:
app: flink
component: jobmanager


---
apiVersion: v1
kind: Service
metadata:
name: flink-jobmanager
namespace: sd-bigdata
spec:
ports:
- name: rpc
port: 6123
- name: blob-server
port: 6124
selector:
app: flink
component: jobmanager

3:jobmanager-session-deployment-ha.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
name: flink-jobmanager
namespace: sd-bigdata
spec:
  replicas: 3 # Set the value to greater than 1 to start standby JobManagers,建议设为奇数个
selector:
matchLabels:
app: flink
component: jobmanager
template:
metadata:
labels:
app: flink
component: jobmanager
spec:
hostAliases:
      - ip: "47.92.212.xx"     # kafka ip 地址
hostnames:
- "sd-kafka001"
- "kafka001"
      - ip: "39.99.227.xx"
hostnames:
- "sd-kafka002"
- "kafka002"
      - ip: "39.99.158.xx"
hostnames:
- "sd-kafka003"
- "kafka003"
      - ip: "192.168.1.xx"      # hdfs ip 地址              
hostnames:
- "sd-cluster-03"
      - ip: "192.168.1.xx"
hostnames:
- "sd-cluster-04"
      - ip: "192.168.1.xx"
hostnames:
- "sd-cluster-05"
containers:
- name: jobmanager # 容器名(角色名)
# image: registry-jf.sensedeal.wiki:9443/big-data/hdfs_flink:v8
        image: registry-jf.sensedeal.wiki:9443/big-data/flink_k8s:v1.40 # 镜像名
env:
- name: POD_IP
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: status.podIP
# The following args overwrite the value of jobmanager.rpc.address configured in the configuration config map to POD_IP.
        args: ["jobmanager", "$(POD_IP)"]             # 这两⾏不能省略
# args: ["jobmanager"]
command: ["/docker-entrypoint.sh"]
ports:
- containerPort: 6123
name: rpc
- containerPort: 6124
name: blob-server
- containerPort: 8081
name: webui
livenessProbe:
tcpSocket:
port: 6123
initialDelaySeconds: 30
periodSeconds: 60
volumeMounts:
- name: flink-config-volume
mountPath: /opt/flink/conf
securityContext:
runAsUser: 9999 # refers to user _flink_ from official flink image, change if necessary
serviceAccountName: flink-service-account # Service account which has the permissions to create, edit, delete ConfigMaps
volumes:
- name: flink-config-volume
configMap:
name: flink-config
items:
- key: flink-conf.yaml
path: flink-conf.yaml
- key: log4j-console.properties
path: log4j-console.properties

注意:serviceAccountName 必须具有相关权限。

3:Taskmanager-query-state-service.yaml 可选服务,公开 TaskManager 端⼝以作为公共Kubernetes 节点的端⼝访问可查询状态

如果您为其创建 NodePort 服务,则可以访问 TaskManager 的可查询状态:

    1. 运⾏为pod kubectl create -f taskmanager-query-state-service.yaml 创建 NodePort 服务 taskmanager 的例⼦ taskmanager-query-state-service.yaml 可以在附录中找到。

    2. 运⾏ kubectl get svc flink-taskmanager-query-state 以获取 <node-port> 此服务的。然后你可以创建QueryableStateClient(, 来提交状态查询。


taskmanager-query-state-service.yaml

apiVersion: v1
kind: Service
metadata:
name: flink-taskmanager-query-state
namespace: sd-bigdata
spec:
type: NodePort
ports:
- name: query-state
port: 6125
targetPort: 6125
nodePort: 30025
selector:
app: flink
component: taskmanager

taskmanager-session-deployment-ha.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
name: flink-taskmanager
namespace: sd-bigdata
spec:
replicas: 4
selector:
matchLabels:
app: flink
component: taskmanager
template:
metadata:
labels:
app: flink
component: taskmanager
spec:
hostAliases:
      - ip: "47.92.212.xx"
hostnames:
- "sd-kafka001"
- "kafka001"
      - ip: "39.99.227.xx"
hostnames:
- "sd-kafka002"
- "kafka002"
      - ip: "39.99.158.xx"
hostnames:
- "sd-kafka003"
- "kafka003"
      - ip: "192.168.1.xx"
hostnames:
- "sd-cluster-03"
      - ip: "192.168.1.xx"
hostnames:
- "sd-cluster-04"
      - ip: "192.168.1.xx"
hostnames:
- "sd-cluster-05"
containers:
- name: taskmanager
# image: registry-jf.sensedeal.wiki:9443/big-data/hdfs_flink:v8
image: registry-jf.sensedeal.wiki:9443/big-data/flink_k8s:v1.40
args: ["taskmanager"]
command: ["/docker-entrypoint.sh"]
ports:
- containerPort: 6122
name: rpc
- containerPort: 6125
name: query-state
livenessProbe:
tcpSocket:
port: 6122
initialDelaySeconds: 30
periodSeconds: 60
volumeMounts:
- name: flink-config-volume
mountPath: /opt/flink/conf/
securityContext:
runAsUser: 9999 # refers to user _flink_ from official flink image, change if necessary
serviceAccountName: flink-service-account //必须配置
volumes:
- name: flink-config-volume
configMap:
name: flink-config
items:
- key: flink-conf.yaml
path: flink-conf.yaml
- key: log4j-console.properties
path: log4j-console.properties

此外,您必须使⽤有权创建、编辑、删除 ConfigMap 的服务帐户启动 JobManager 和 TaskManagerpod。有关更多信息,有关更多信息,请参阅如何为 Pod 配置服务帐户。


当启⽤ High-Availability 时,Flink 将使⽤⾃⼰的 HA-services 进⾏服务发现。因此,JobManager pod应该以其 IP 地址⽽不是 Kubernetes 服务作为其 jobmanager.rpc.address .


4:serviceAccountName 需要运维配置:

role-sd-bigdata.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: flink-sa
namespace: default
rules:
- apiGroups:
- '*'
resources:
- '*'
verbs:
- "*"

rolebinding-flink-sa-default.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: flink-sa-default
namespace: default
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: flink-sa
subjects:
- kind: ServiceAccount
name: flink-service-account
namespace: sd-bigdata


5:启动服务:

切换为具有执⾏权限的⽤户后执⾏以下命令:

启动

 kubectl apply -f flink-configuration-configmap.yaml -n namespace
kubectl apply -f jobmanager-rest-service.yaml -n namespace
kubectl apply -f jobmanager-session-deployment-ha.yaml -n namespace
kubectl apply -f taskmanager-query-state-service.yaml -n namespace
kubectl apply -f taskmanager-session-deployment-ha.yaml -n namespace

删除:

 kubectl delete -f flink-configuration-configmap.yaml -n namespace
kubectl delete -f jobmanager-rest-service.yaml -n namespace
kubectl delete -f jobmanager-session-deployment-ha.yaml -n namespace
kubectl delete -f taskmanager-query-state-service.yaml -n namespace
kubectl delete -f taskmanager-session-deployment-ha.yaml -n namespace

查看:

kubectl get pods -n namespace

kubectl get svc -n namespace

kubectl get all -n namespace

文章转载自大数据启示录,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论