暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

大学资料-R语言 整合数据

大学生资料阁 2020-09-22
343

R语言中提供了许多用来整合和重塑数据的强大方法

在整合数据时,往往将多组观测值替换为根据这些观测值计算的描叙性统计量

在重塑数据时,则会通过修改数据的结构(行和列)来决定数据的组织方式


使用SQL语句操作数据(*)

  • 虽然在R语言中有很多优秀的函数,如aggregate和daply可以对数据框统计,但sql功能强大,不仅能实现数据的清洗、统计、运算,还可以实现数据存储、控制、定义和调用

  • library(sqldf)

示例:

    #  安装sqldf包
    install.packages("sqldf")
    # 运行结果:
    # WARNING: Rtools is required to build R packages but is not currently installed. Please # download and install the appropriate version of Rtools before proceeding:
    #
    # https://cran.rstudio.com/bin/windows/Rtools/
    # Installing package into ‘C:/Users/Admin/Documents/R/win-library/3.6’
    # (as ‘lib’ is unspecified)
    # also installing the dependencies ‘ellipsis’, ‘glue’, ‘bit’, ‘rlang’, ‘vctrs’, ‘digest’, ‘bit64’, ‘blob’, ‘memoise’, ‘pkgconfig’, ‘Rcpp’, ‘BH’, ‘plogr’, ‘gsubfn’, ‘proto’, ‘RSQLite’, ‘DBI’, ‘chron’
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/ellipsis_0.3.0.zip'
    # Content type 'application/zip' length 44575 bytes (43 KB)
    # downloaded 43 KB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/glue_1.4.0.zip'
    # Content type 'application/zip' length 158233 bytes (154 KB)
    # downloaded 154 KB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/bit_1.1-15.2.zip'
    # Content type 'application/zip' length 252475 bytes (246 KB)
    # downloaded 246 KB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/rlang_0.4.5.zip'
    # Content type 'application/zip' length 1131356 bytes (1.1 MB)
    # downloaded 1.1 MB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/vctrs_0.2.4.zip'
    # Content type 'application/zip' length 1027328 bytes (1003 KB)
    # downloaded 1003 KB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/digest_0.6.25.zip'
    # Content type 'application/zip' length 249452 bytes (243 KB)
    # downloaded 243 KB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/bit64_0.9-7.zip'
    # Content type 'application/zip' length 551485 bytes (538 KB)
    # downloaded 538 KB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/blob_1.2.1.zip'
    # Content type 'application/zip' length 47627 bytes (46 KB)
    # downloaded 46 KB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/memoise_1.1.0.zip'
    # Content type 'application/zip' length 36855 bytes (35 KB)
    # downloaded 35 KB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/pkgconfig_2.0.3.zip'
    # Content type 'application/zip' length 22207 bytes (21 KB)
    # downloaded 21 KB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/Rcpp_1.0.4.6.zip'
    # Content type 'application/zip' length 3030802 bytes (2.9 MB)
    # downloaded 2.9 MB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/BH_1.72.0-3.zip'
    # Content type 'application/zip' length 18270741 bytes (17.4 MB)
    # downloaded 17.4 MB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/plogr_0.2.0.zip'
    # Content type 'application/zip' length 18864 bytes (18 KB)
    # downloaded 18 KB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/gsubfn_0.7.zip'
    # Content type 'application/zip' length 358104 bytes (349 KB)
    # downloaded 349 KB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/proto_1.0.0.zip'
    # Content type 'application/zip' length 472221 bytes (461 KB)
    # downloaded 461 KB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/RSQLite_2.2.0.zip'
    # Content type 'application/zip' length 2275367 bytes (2.2 MB)
    # downloaded 2.2 MB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/DBI_1.1.0.zip'
    # Content type 'application/zip' length 607261 bytes (593 KB)
    # downloaded 593 KB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/chron_2.3-55.zip'
    # Content type 'application/zip' length 203176 bytes (198 KB)
    # downloaded 198 KB
    #
    # 试开URL’https://cran.rstudio.com/bin/windows/contrib/3.6/sqldf_0.4-11.zip'
    # Content type 'application/zip' length 78408 bytes (76 KB)
    # downloaded 76 KB
    #
    # package ‘ellipsis’ successfully unpacked and MD5 sums checked
    # package ‘glue’ successfully unpacked and MD5 sums checked
    # package ‘bit’ successfully unpacked and MD5 sums checked
    # package ‘rlang’ successfully unpacked and MD5 sums checked
    # package ‘vctrs’ successfully unpacked and MD5 sums checked
    # package ‘digest’ successfully unpacked and MD5 sums checked
    # package ‘bit64’ successfully unpacked and MD5 sums checked
    # package ‘blob’ successfully unpacked and MD5 sums checked
    # package ‘memoise’ successfully unpacked and MD5 sums checked
    # package ‘pkgconfig’ successfully unpacked and MD5 sums checked
    # package ‘Rcpp’ successfully unpacked and MD5 sums checked
    # package ‘BH’ successfully unpacked and MD5 sums checked
    # package ‘plogr’ successfully unpacked and MD5 sums checked
    # package ‘gsubfn’ successfully unpacked and MD5 sums checked
    # package ‘proto’ successfully unpacked and MD5 sums checked
    # package ‘RSQLite’ successfully unpacked and MD5 sums checked
    # package ‘DBI’ successfully unpacked and MD5 sums checked
    # package ‘chron’ successfully unpacked and MD5 sums checked
    # package ‘sqldf’ successfully unpacked and MD5 sums checked
    #
    # The downloaded binary packages are in
    # C:\Users\Admin\AppData\Local\Temp\RtmpUHJCna\downloaded_packages
    library(sqldf)


    name <- c(rep("张三", 1, 3), rep("李四", 3))
    subject <- c("数学","语文","英语","数学","语文","英语")
    score <- c(89, 80, 70, 90, 70, 80)
    stuid <- c(1, 1, 1, 2, 2, 2)
    stuscore <- data.frame(name, subject, score, stuid)
    stuscore
    # 运行结果:
    # name subject score stuid
    # 1 张三 数学 89 1
    # 2 张三 语文 80 1
    # 3 张三 英语 70 1
    # 4 李四 数学 90 2
    # 5 李四 语文 70 2
    # 6 李四 英语 80 2
    sqldf("select name, sum(score) as allscore from stuscore group by name order by allscore")
    # 运行结果:
    # name allscore
    # 1 张三 239
    # 2 李四 240
    sqldf("select name, stuid, sum(score) as allscore from stuscore group by name order by allscore")
    # 运行结果:
    # name stuid allscore
    # 1 张三 1 239
    # 2 李四 2 240
    sqldf("select stuid, name, subject, max(score) as maxscore from stuscore group by stuid order by maxscore")
    # 运行结果:
    # stuid name subject maxscore
    # 1 1 张三 数学 89
    # 2 2 李四 数学 90
    sqldf("select stuid, name, subject, avg(score) as avgscore from stuscore group by stuid order by avgscore")
    # 运行结果:
    # stuid name subject avgscore
    # 1 1 张三 数学 79.66667
    # 2 2 李四 数学 80.00000

    汇总统计数据

    数据汇总统计通过aggregate()实现
    它首先将数据进行分组(按行),然后对每一组数据进行函数统计,最后把结果组合成一个表格返回

    aggregate(x,by,FUN)

    其中:

    • x是待统计的数据对象

    • by是一个变量名组成的列表,这些变量将被去掉以形成新的观测

    • FUN是用来计算描述统计量的标量函数,它将被用来计算新的观测值

    示例:

      score <- data.frame(ID = c(101, 102, 103, 104, 105, 106, 107, 108, 109, 110),
      score1 = c(92, 86, 85, 74, 82, 88, 96, 91, 84, 72),
      score2 = c(73, 69, 82, 93, 80, 94, 71, 87, 86, 91),
      gender = c("male", "male", "female", "female", "female", "female", "female", "male", "male", "male"))
      score
      # 运行结果:
      # ID score1 score2 gender
      # 1 101 92 73 male
      # 2 102 86 69 male
      # 3 103 85 82 female
      # 4 104 74 93 female
      # 5 105 82 80 female
      # 6 106 88 94 female
      # 7 107 96 71 female
      # 8 108 91 87 male
      # 9 109 84 86 male
      # 10 110 72 91 male
      aggregate(score[,c(2,3)],by=list(score[,4]),FUN=mean)
      # 运行结果:
      # Group.1 score1 score2
      # 1 female 85 84.0
      # 2 male 85 81.2


      mtcars
      # 运行结果:
      # mpg cyl disp hp drat wt qsec vs am gear carb
      # Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
      # Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
      # Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
      # Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
      # Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
      # Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
      # Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
      # Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
      # Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
      # Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
      # Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
      # Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
      # Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
      # Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
      # Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
      # Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
      # Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
      # Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
      # Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
      # Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
      # Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
      # Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
      # AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
      # Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
      # Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
      # Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
      # Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
      # Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
      # Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
      # Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
      # Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
      # Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
      colnames(mtcars)
      # 运行结果:
      # [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear" "carb"
      mtcars$cyl
      # 运行结果:
      # [1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4
      attach(mtcars) # 绑定数据集,之后可直接引用变量名
      # 运行结果:
      # [1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4
      aggregate(mtcars[,c(1,3)],by=list(cyl,gear),FUN=mean)
      # 运行结果:
      # Group.1 Group.2 mpg disp
      # 1 4 3 21.500 120.1000
      # 2 6 3 19.750 241.5000
      # 3 8 3 15.050 357.6167
      # 4 4 4 26.925 102.6250
      # 5 6 4 19.750 163.8000
      # 6 4 5 28.200 107.7000
      # 7 6 5 19.700 145.0000
      # 8 8 5 15.400 326.0000

      重塑数据

      重塑数据可以通过merge函数与melt函数实现。其中,merge函数可以横向合并两个数据框(数据集),melt函数可以实现数据整合的功能

      merge函数

      粘贴数据结构——R中合并两个数据集可以通过专门的函数merge( )来实现

      merge通过相同的列或行名来识别,合并两个数据框或列表,其调用格式如下:
              merge(x,y,by = intersect(names(x),names(y)),
                      by.x = by, by.y = by, all = FALSE, all.x = all, all.y = all,
                      sort = TRUE, suffixes = c(".x",".y"), no.dups = TRUE,
                      incomparables = NULL, …)


      最后修改时间:2020-09-23 18:23:48
      文章转载自大学生资料阁,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

      评论