暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

大数据分析的作用

原创 seali2008 2022-07-12
1711

大数据分析是指对规模巨大的数据进行分析。大数据可以概括为5个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)、真实性(Veracity) 。

大数据分析的六个基本方面

1. Analytic Visualizations(可视化分析)

不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。

2. Data Mining Algorithms(数据挖掘算法)

可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。


3. Predictive Analytic Capabilities(预测性分析能力)

数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。


4. Semantic Engines(语义引擎)

我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从"文档"中智能提取信息。


5. Data Quality and Master Data Management(数据质量和数据管理)

数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。

假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。


6.数据存储,数据仓库

数据仓库是为了便于多维分析和多角度展示数据按特定模式进行存储所建立起来的关系型数据库。在商业智能系统的设计中,数据仓库的构建是关键,是商业智能系统的基础,承担对业务系统数据整合的任务,为商业智能系统提供数据抽取、转换和加载(ETL),并按主题对数据进行查询和访问,为联机数据分析和数据挖掘提供数据平台。

什么是企业大数据?

企业大数据最核心的价值就是企业在对于海量数据进行收集、存储和分析之后,通过对这些数据的挖掘与分析,为提高企业运营效率、业务价值和开拓企业新业务提供参考与导向,并为企业未来发展战略提供支持,实现企业整体竞争力的提升。

企业大数据不可或缺的一部分是来自日常经营和管理中产生的数据,它全面记录企业经营和管理活动的数据。在企业数据化经营和管理中,只有全面的、相互关联的数据才能发挥作用。

如何让大数据分析更具价值?

01让数据驱动决策

以往很多企业的经营决策可能都是出于管理者的经验,它是相对主观的。而数据是对客观事物的逻辑归纳,它真实的反映了事物的状态和变化,相比于传统决策,基于数据的决策更准确,同时对作出决策人的要求也更低。

在一个技术创新大爆炸的时代,我们别无选择,必须做好数据分析,利用大数据分析为所有职场人员作出迅捷、高质、高效的决策,提供具有指导意义的洞察和可规模化的解决方案。


02、快速建立分析模型

数据分析的目的是将数据变为信息,赋予数据生命力,解决业务的核心诉求。建立多维分析模型是将大数据进行场景化、即席化、可视化以及智能化的强大基础。

相对于表格,以三位立方体形式呈现的数据结构更加直观。在这个数据立方体中,每一个坐标轴都代表一个业务角度(时间、地区、产品),坐标轴上的坐标值则表示了某个业务角度的一个确定的值(如:北京市、3月份、手机),不同坐标轴坐标值的交叉点则表示一个具体的销售额。


03、支持场景化分析

场景化分析是针对企业业务经营的具体场景开展的数据分析,场景化分析符合数字分析敏捷化、业务化、前瞻化的发展趋势,将替代财务分析成为企业数据分析的主流。场景化分析并非只是简单的基于对业务场景的数据分析。它是建构于数字化时代企业IT新架构之上,以企业各类数据为基础的应用。


在大数据分析中,很多分析都是使用相关关系进行的。而企业经营是由一个个具体的场景串联叠加的结果,对于企业经营而言,将分析深入到企业最基础的业务环节中,基于业务的因果分析甚至更为重要。


市场变化需要考虑的因素越来越多,需要企业家做出决策的时间越来越短,对形成决策依据的各项数据的获取、提炼、分析的准确速度要求就越来越高!基于多维数据库和沙箱等技术分析型软件系统越来越受到企业青睐。


04、更短的响应时间

更高的响应速度永远是数据分析的追求。决策者在实时获得信息和分析结果的情况下,能够以前所未有的方式获得新的洞察和完成业务流程。实时数据检索不仅可以降低成本、提高效率和可视化速度。

企业不再局限于在数据仓库中划分的数据子集,而是可以更全面地收集和处理业务数据,使企业从原来被动的事后分析转变为主动的实时决策,并可以以此为基础创建基于预测的、而非基于响应的业务模型。


快速响应让分析应用惠及普通员工和管理链的上下游。即使没有多少IT专业知识的员工也可以构建查询条目和仪表板,由此培养出更多内容创建方面的专家,激发他们的工作积极性。

「喜欢这篇文章,您的关注和赞赏是给作者最好的鼓励」
关注作者
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文章的来源(墨天轮),文章链接,文章作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论