暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析

拓端数据部落 2022-06-15
902

原文链接:http://tecdat.cn/?p=11878

Nelson-Siegel- [Svensson]模型是拟合收益曲线的常用方法。它的优点是其参数的经济可解释性,被银行广泛使用。但它不一定在所有情况下都有效:模型参数有时非常不稳定,无法收敛。

相关视频

在之前的文章中,我们提供了Nelson-Siegel模型收敛失败的示例,我们已经展示了它的一些缺陷。

蒙特卡洛模拟帮助我们理解:

 3.  for(j in 1:N_SIMULATIONS)


5. {


10.     npo = c(newYields, oldYields)


12.     plot(MATURITY_BASES, oldYields, ylim=c(min(npo), max(npo)))


14.     lines(MATURITY_BASES, oldYields)


16.     points(MATURITY_BASES, newYields, col="red", pch=4)


18.     points(newMATs, newNsYields, col="blue")


20.     lines(newMATs, newNsYields, col="blue")

我们要做的是:从一些收益率曲线开始,然后逐步地随机修改收益率,最后尝试NS模型拟合新的收益。因此我们对此进行了模拟。


点击标题查阅往期内容


分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法


左右滑动查看更多


01

02

03

04



对于Nelson-Siegel模型,此Monte-Carlo模拟尽管假定前一步的收益(旧收益率)   与NS曲线_完全_匹配。但是,即使如此也无法完全避免麻烦。我们如何发现这些麻烦?在每一步中,我们计算两条相邻曲线之间的最大距离(supremum-norm):

maxDistanceArray[j] = maxabs(oldYieldsArray[j,] - newNsYieldsArray[j,]) )

最后,我们找到到上一条曲线的最大距离的步骤,这就是收敛失败的示例。

_maxDistanceArray_的概率密度   如下所示:


分布尾部在0.08处减小,但对于收益率曲线而言,每天偏移8个点并不罕见。因此,尽管我们进行了1e5 = 10000蒙特卡洛模拟,但只有极少数情况,我们可以将其标记为不良。训练神经网络绝对是不够的。而且,两条Nelson-Siegel曲线可能彼此非常接近,但其参数却彼此远离。由于模型是线性的, 因此可以假设beta的极大变化(例如,超过95分位数)是异常值,并将其标记为不良。

 3.  idx = intersect(intersect(which(b0 < q_b0), which(b1 < q_b1)), which(b2 < q_b2))


5. par(mfrow=c(3,3))


7. plot(density(log(b0)))


9. plot(density(log(b1)))


11. plot(density(log(b2)))


13. plot(density(log(b0[idx])))


15. plot(density(log(b1[idx])))


17. plot(density(log(b2[idx])))


19. plot(density(b0[idx]))


21. plot(density(b1[idx]))


23. plot(density(b2[idx]))


29. b0 = b0-mean(b0)


31. b1 = b1-mean(b1)


33. b2 = b2-mean(b2)


37. #训练神经网络


39. X = cbind(b0, b1, b2)


41. Y = array(0, dim=(N_SIMULATIONS-1))


43. Y[idx] = 1


然后我们可以训练神经网络



1. SPLT = 0.8


3. library(keras)


5. b = floor(SPLT*(N_SIMULATIONS-1))


14. plot(history)


16. model %>% evaluate(x_test, y_test)



神经网络不仅在样本而且在验证集上都提供了高精度。
如果模拟新数据集,对模型进行修改  :例如修改VOLAs = 0.005*sqrt(MATURITY_BASES)
 到  VOLAs = 0.05*sqrt(MATURITY_BASES)
 将无法识别新数据集上的不良情况。

不足与展望:尽管我们在两种情况下均对数据进行了归一化和平均化,但是模型波动性的线性变化对尾部分位数具有很高的非线性影响。

那么,我们是否需要一个更复杂的AI模型?


点击文末“阅读原文”

获取全文完整资料


本文选自《R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析》。


点击标题查阅往期内容

分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法
用R语言用Nelson Siegel和线性插值模型对债券价格和收益率建模
R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析
R语言和QuantLib中Nelson-Siegel模型收益曲线建模分析
R语言使用随机技术差分进化算法优化的Nelson-Siegel-Svensson模型
用R语言用Nelson Siegel和线性插值模型对债券价格和收益率建模
R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析
R语言中的Nelson-Siegel模型在汇率预测的应用
python使用LASSO回归预测股票收益
R语言数据的收益率和波动性交易
R语言用线性模型进行预测:加权泊松回归,普通最小二乘,加权负二项式模型,多重插补缺失值
使用SAS,Stata,HLM,R,SPSS和Mplus的分层线性模型HLM
R语言用线性回归模型预测空气质量臭氧数据


文章转载自拓端数据部落,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论