暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

Pandas 读取处理Excel技巧集锦

alitrack 2022-10-13
1764

我之前写的几篇从 Excel 中 ETL 的文章

清洗 DataFrame 中的货币符号

df['Sales'] = df['Sales'].replace({'\$'''','''}, regex=True).astype(float)

这种方法使用 Pandas 的  Series.replace[1]。它看起来与字符串替换方法非常相似,但此代码实际上适当地处理了非字符串值。

自动补全缺失数据

主表、明细合并的时候,常见主表部分省略的情况,这个时候可以使用

df = df.fillna(method ='ffill')

或者

df = df.ffill()

使用 maya 简化日期处理

在 Python 中处理日期时间往往非常令人沮丧的事情,尤其是在处理不同系统上的不同语言环境时。这个库的存在是为了让简单的事情变得更容易,同时承认时间是一种幻觉(时区更是如此)。

日期时间应该通过为人类编写的 API 进行交互。

Maya 主要围绕解析来自网站的日期时间数据的难题和用例构建。

df1['date1'] = df1.Date.apply(lambda x: maya.parse(x).datetime())

抽取季节(Qualter)

df1['OrderPeriod'] = df1.date1.apply(lambda x: x.to_period(freq='Q').strftime('%Y-0%q'))

读取 xlsx 报错

import pandas as pd
df = pd.read_excel('aa.xlsx')

UserWarning: File contains an invalid specification for Sheet1. This will be removed
...
ValueError: Worksheet index 0 is invalid, 0 worksheets found

这种情况下多半是因为该 Excel 文档的存储格式为 Strict Open XML Spreadsheet (*.xlsx)
, 而 openpyxl
不能很好解析该格式(我使用的版本为 3.0.0),需要使用 Excel 打开并保存为一般的 Excel Workbook (*.xlsx)
即可



参考资料

[1]

Series.replace: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.replace.html


文章转载自alitrack,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论