暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD

拓端数据部落 2022-10-10
463

全文链接:http://tecdat.cn/?p=28265 

作者:Xiaoyi Sun


预测股票价格,并在合适的时间产生交易策略实现收益,一直是一个热门的问题,到现在为止也提出了很多预测方法。但股票价格 的实时预测是一个难点,需要及时预测价格趋势并作出交易判断。




相关视频

解决方案

任务/目标

根据市场上已有价格等数据,预测股票价格或趋势,形成交易策略,通过回测计算收益情况。

数据源准备

使用分钟集数据,获得股票价格、交易量、 流量数据,其中流量数据是用一种特殊的方 法计算。每天交易时间为 4 小时,所以一天 有 240 组数据。

由于数据量级的差异,需要对数据进行预处理,都进行归一化。

构造

以上说明了如何抽取相关特征,我们大致有如下训练样本(只列举部分特征)。

划分训练集和测试集

考虑到最终模型会预测将来的某时间段的销 量,为了更真实的测试模型效果,以时间来 切分训练集和测试集。其中训练集与测试集 的比例为 8:2。

建模

LSTM,长短期记忆网络,是一种特殊的 RNN 网络。LSTM 解决了 RNN 中存在的长期依赖问题, 有输入门、输出门和遗忘门。

EMD,经验模态分解,任何信号可以分解成若干模态分量之合。

 

EMD分解在处理非平稳及非线性数据上,具有非常明显的优势,适合于分析非线性、非 平稳信号序列,具有很高的信噪比。

模型优化

利用 LSTM 预测股票价格解决 EMD 分解的端点问题。

利用 LSTM 预测中国平安的股票价格情况:从 loss 图中可以看出,网络效果较好,训练集和测试集的loss 都是下降后趋于稳定,不存在过拟合现象。

 

从下图可以看出测试集的价格预测有很高的 一致性。


点击标题查阅往期内容


Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性


左右滑动查看更多


01

02

03

04



 

下图是放大后效果

 

利用EMD 分解计算 MACD 的值生成交易信号,将信号代入真实股价产生收益。可以 看出胜率在60%左右

关于作者

在此对Xiaoyi Sun对本文所作的贡献表示诚挚感谢,她在哈尔滨工业大学完成了应用统计硕士学位,专长深度学习、数理金融等。



有问题

请点击文“阅读原文”


本文选自《PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略的股票价格MACD分析》。


点击标题查阅往期内容

R语言深度学习:用keras神经网络回归模型预测时间序列数据
【视频】CNN(卷积神经网络)模型以及R语言实现回归数据分析
Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性
数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析
Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类
RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测
结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析
深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据
用PyTorch机器学习神经网络分类预测银行客户流失模型
PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据
Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化
Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
R语言深度学习:用keras神经网络回归模型预测时间序列数据
Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类
R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)
MATLAB中用BP神经网络预测人体脂肪百分比数据
Python中用PyTorch机器学习神经网络分类预测银行客户流失模型
R语言实现CNN(卷积神经网络)模型进行回归数据分析
SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型
【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析
Python使用神经网络进行简单文本分类
R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析
R语言基于递归神经网络RNN的温度时间序列预测
R语言神经网络模型预测车辆数量时间序列
R语言中的BP神经网络模型分析学生成绩
matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类
R语言实现拟合神经网络预测和结果可视化
用R语言实现神经网络预测股票实例
使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测
python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译
用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类


文章转载自拓端数据部落,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论