暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

拓端数据部落 2022-09-06
580

全文链接:http://tecdat.cn/?p=21545


在本文任何MCMC方案的目标都是从“目标”分布产生样本。在这种情况下,我们将使用平均值为1的指数分布作为我们的目标分布。


相关视频


示例1:使用MCMC的指数分布采样

所以我们从定义目标密度开始:

target = function(x){
if(x<0){
return(0)}
else {
return( exp(-x))
}
}

定义了函数之后,我们现在可以用它来计算几个值(只是为了说明函数的概念):

target(1)


[10.3678794


target(-1)


[10


接下来,我们将规划一个Metropolis-Hastings方案,从与目标成比例的分布中进行抽样

x[1] = 3     #这只是一个起始值,我设置为3
for(i in 2:1000){
A = target(proposedx)/target(currentx)
if(runif(1)<A){
x[i] = proposedx # 接受概率min(1,a)
} else {
x[i] = currentx #否则“拒绝”行动,保持原样
}


注意,x是马尔可夫链的实现。我们可以画几个x的图:


点击标题查阅往期内容


R语言中的Stan概率编程MCMC采样的贝叶斯模型


左右滑动查看更多


01

02

03

04



我们可以将其封装在一个mcmc函数中,以使代码更整洁,这样更改起始值和提议分布更容易

 for(i in 2:niter){
currentx = x[i-1]
proposedx = rnorm(1,mean=currentx,sd=proposalsd)
A = target(proposedx)/target(currentx)
if(runif(1)<A){
x[i] = proposedx # 接受概率min(1,a)
} else {
x[i] = currentx # 否则“拒绝”行动,保持原样
}


现在我们将运行MCMC方案3次,看看结果有多相似:

z1=MCMC(1000,3,1)
z2=MCMC(1000,3,1)
z3=MCMC(1000,3,1)

plot(z1,type="l")


par(mfcol=c(3,1)) #告诉R将3个图形放在一个页面上

hist(z1,breaks=seq(0,maxz,length=20))


练习

使用函数easyMCMC了解以下内容:

  1. 不同的起始值如何影响MCMC方案?

  2. 较大/较小的提案标准差有什么影响?

  3. 尝试将目标函数更改为

target = function(x){

return((x>0 & x <1) + (x>2 & x<3))
}


这个目标看起来像什么?如果提议sd太小怎么办?(例如,尝试1和0.1)

例2:估计等位基因频率

在对双等位基因座的基因型(如具有AA和AA等位基因的基因座)进行建模时,一个标准的假设是群体是“随机”的。这意味着如果p是等位基因AA的频率,那么基因型将分别具有频率

p一个简单的先验是假设它在[0,1]上是均匀的。假设我们抽样n个个体,观察基因型基因型基因型

下面的R代码给出了一个简短的MCMC例程,可以从p的后验分布中进行采样。请尝试遍历该代码,看看它是如何工作的。

prior = function(p){
if((p<0) || (p>1)){ # || 这里意思是“或”
return(0)}
else{
return(1)}
}

likelihood = function(p, nAA, nAa, naa){
return(p^(2*nAA) * (2*p*(1-p))^nAa * (1-p)^(2*naa))
}

psampler = function(nAA, nAa, naa){

for(i in 2:niter){

if(runif(1)<A){
p[i] = newp # 接受概率min(1,a)
} else {
p[i] = currentp # 否则“拒绝”行动,保持原样
}


运行此样本。

现在用一些R代码来比较后验样本和理论后验样本(在这种情况下可以通过分析获得;因为我们观察到121个As和79个as,在200个样本中,p的后验样本是β(121+1,79+1)。

 hist(z,prob=T)
lines(x,dbeta(x,122, 80)) # 在直方图上叠加β密度


您也可能希望将前5000 z的值丢弃为“burnin”(预烧期)。这里有一种方法,在R中仅选择最后5000 z

hist(z[5001:10000])


练习

研究起点和提案标准偏差如何影响算法的收敛性。

例3:估计等位基因频率和近交系数

一个复杂一点的替代方法是假设人们有一种倾向,即人们会与比“随机”关系更密切的其他人近交(例如,在地理结构上的人口中可能会发生这种情况)。一个简单的方法是引入一个额外的参数,即“近亲繁殖系数”f,并假设基因型有频率

在大多数情况下,将f作为种群特征来对待是很自然的,因此假设f在各个位点上是恒定的。

请注意,f和p都被约束为介于0和1之间(包括0和1)。对于这两个参数中的每一个,一个简单的先验是假设它们在[0,1]上是独立的。假设我们抽样n个个体,观察基因型基因型基因型

练习:

  • 编写一个短的MCMC程序,从f和p的联合分布中取样。

sampler = function(){

f[1] = fstartval
p[1] = pstartval
for(i in 2:niter){
currentf = f[i-1]
currentp = p[i-1]
newf = currentf +
newp = currentp +

}
return(list(f=f,p=p)) # 返回一个包含两个名为f和p的元素的“list”
}


  • 使用此样本获得f和p的点估计(例如,使用后验平均数)和f和p的区间估计(例如,90%后验置信区间),数据:

附录:GIBBS采样

您也可以用Gibbs采样器解决这个问题 

为此,您将想要使用以下“潜在变量”表示模型:

将zi相加得到与上述相同的模型:

 




点击文末“阅读原文”

获取全文完整代码数据资料


本文选自《R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例》。


点击标题查阅往期内容

R语言中的Stan概率编程MCMC采样的贝叶斯模型
R语言贝叶斯MCMC:用rstan建立线性回归模型分析汽车数据和可视化诊断
【视频】马尔可夫链蒙特卡罗方法MCMC原理与R语言实现|数据分享
R语言实现MCMC中的Metropolis–Hastings算法与吉布斯采样
R语言贝叶斯METROPOLIS-HASTINGS GIBBS 吉布斯采样器估计变点指数分布分析泊松过程车站等待时间
R语言马尔可夫MCMC中的METROPOLIS HASTINGS,MH算法抽样(采样)法可视化实例
python贝叶斯随机过程:马尔可夫链Markov-Chain,MC和Metropolis-Hastings,MH采样算法可视化
Python贝叶斯推断Metropolis-Hastings(M-H)MCMC采样算法的实现
Metropolis Hastings采样和贝叶斯泊松回归Poisson模型
Matlab用BUGS马尔可夫区制转换Markov switching随机波动率模型、序列蒙特卡罗SMC、M H采样分析时间序列
R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据
R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机波动率SV模型、粒子滤波、Metropolis Hasting采样时间序列分析
R语言Metropolis Hastings采样和贝叶斯泊松回归Poisson模型
R语言贝叶斯MCMC:用rstan建立线性回归模型分析汽车数据和可视化诊断
R语言贝叶斯MCMC:GLM逻辑回归、Rstan线性回归、Metropolis Hastings与Gibbs采样算法实例
R语言贝叶斯Poisson泊松-正态分布模型分析职业足球比赛进球数
R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数
R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病
R语言中贝叶斯网络(BN)、动态贝叶斯网络、线性模型分析错颌畸形数据
R语言中的block Gibbs吉布斯采样贝叶斯多元线性回归
Python贝叶斯回归分析住房负担能力数据集
R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析
Python用PyMC3实现贝叶斯线性回归模型
R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型
R语言Gibbs抽样的贝叶斯简单线性回归仿真分析
R语言和STAN,JAGS:用RSTAN,RJAG建立贝叶斯多元线性回归预测选举数据
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究
R语言贝叶斯线性回归和多元线性回归构建工资预测模型
R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例
R语言stan进行基于贝叶斯推断的回归模型
R语言中RStan贝叶斯层次模型分析示例
R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化
R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型
WinBUGS对多元随机波动率模型:贝叶斯估计与模型比较
R语言实现MCMC中的Metropolis–Hastings算法与吉布斯采样
R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例
R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化
视频:R语言中的Stan概率编程MCMC采样的贝叶斯模型
R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计
R语言stan进行基于贝叶斯推断的回归模型
R语言中RStan贝叶斯层次模型分析示例
R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型
R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化
视频:R语言中的Stan概率编程MCMC采样的贝叶斯模型
R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计
R语言BUGS/JAGS贝叶斯分析: 马尔科夫链蒙特卡洛方法(MCMC)采样
R语言实现MCMC中的Metropolis–Hastings算法与吉布斯采样
R语言Rstan概率编程规划MCMC采样的贝叶斯模型简介
matlab使用移动平均滤波器、重采样和Hampel过滤器进行信号平滑处理
使用R语言进行Metroplis-in-Gibbs采样和MCMC运行分析


文章转载自拓端数据部落,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论