暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

python连接sql server数据库

DBA技术分享 2021-04-21
1196

1.pymssql 安装



2.python连接sql server数据库实现增删改查

  简述

  python连接微软的sql server数据库用的第三方模块叫做pymssql(document:http://www.pymssql.org/en/stable/index.html)。在官方文档可以看到,pymssql是基于_mssql模块做的封装,是为了遵守python的DBAPI规范接口.


  1.使用pymssql连接sql server数据库并实现数据库基本操作(官方api http://www.pymssql.org/en/stable/ref/pymssql.html )

1)基本语法


import pymssql server = "187.32.43.13"    # 连接服务器地址user = "root"         # 连接帐号password = "1234"      # 连接密码conn = pymssql.connect(server, user, password, "连接默认数据库名称")  #获取连接

cursor = conn.cursor() # 获取光标

# 创建表 cursor.execute(""" IF OBJECT_ID('persons', 'U') IS NOT NULL    DROP TABLE persons CREATE TABLE persons (    id INT NOT NULL,    name VARCHAR(100),    salesrep VARCHAR(100),    PRIMARY KEY(id) ) """)  

# 插入多行数据 cursor.executemany(    "INSERT INTO persons VALUES (%d, %s, %s)",    [(1, 'John Smith', 'John Doe'),     (2, 'Jane Doe', 'Joe Dog'),     (3, 'Mike T.', 'Sarah H.')])# 你必须调用 commit() 来保持你数据的提交如果你没有将自动提交设置为trueconn.commit()

# 查询数据 cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')

# 遍历数据(存放到元组中) 方式1 row = cursor.fetchone()while row:    print("ID=%d, Name=%s" % (row[0], row[1]))    row = cursor.fetchone()

# 遍历数据(存放到元组中) 方式2

for row in cursor:

   print('row = %r' % (row,))

# 遍历数据(存放到字典中)

# cursor = conn.cursor(as_dict=True) # # cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe') # for row in cursor: #     print("ID=%d, Name=%s" % (row['id'], row['name'])) # # conn.close()

# 关闭连接 conn.close()

# 注:在任何时候,在一个连接下,一次正在执行的数据库操作只会出现一个cursor对象


2)同时,如果你可以使用另一种语法:with 来避免手动关闭cursors和connection连接


import pymssql server = "187.32.43.13"    # 连接服务器地址user = "root"         # 连接帐号password = "1234"      # 连接密码with pymssql.connect(server, user, password, "你的连接默认数据库名称") as conn:    with conn.cursor(as_dict=True) as cursor:   # 数据存放到字典中        cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')        for row in cursor:            print("ID=%d, Name=%s" % (row['id'], row['name']))


3)调用存储过程:


with pymssql.connect(server, user, password, "tempdb") as conn:    with conn.cursor(as_dict=True) as cursor:        cursor.execute("""        CREATE PROCEDURE FindPerson            @name VARCHAR(100)        AS BEGIN            SELECT * FROM persons WHERE name = @name        END        """)        cursor.callproc('FindPerson', ('Jane Doe',))        for row in cursor:            print("ID=%d, Name=%s" % (row['id'], row['name']))


 

    2.使用_mssql连接sql server数据库并实现操作(官方api  http://www.pymssql.org/en/stable/ref/_mssql.html)

1)基本语法:


import _mssql# 创建连接conn = _mssql.connect(server='SQL01', user='user', password='password', \    database='mydatabase')

print(conn.timeout)

print(conn.login_timeout)# 创建tableconn.execute_non_query('CREATE TABLE persons(id INT, name VARCHAR(100))')# insert数据conn.execute_non_query("INSERT INTO persons VALUES(1, 'John Doe')") conn.execute_non_query("INSERT INTO persons VALUES(2, 'Jane Doe')")# 查询操作conn.execute_query('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')for row in conn:    print "ID=%d, Name=%s" % (row['id'], row['name'])#查询数量count()numemployees = conn.execute_scalar("SELECT COUNT(*) FROM employees")# 查询一条数据employeedata = conn.execute_row("SELECT * FROM employees WHERE id=%d", 13)# 带参数查询的几个例子:conn.execute_query('SELECT * FROM empl WHERE id=%d', 13) conn.execute_query('SELECT * FROM empl WHERE name=%s', 'John Doe') conn.execute_query('SELECT * FROM empl WHERE id IN (%s)', ((5, 6),)) conn.execute_query('SELECT * FROM empl WHERE name LIKE %s', 'J%') conn.execute_query('SELECT * FROM empl WHERE name=%(name)s AND city=%(city)s', \    { 'name': 'John Doe', 'city': 'Nowhere' } ) conn.execute_query('SELECT * FROM cust WHERE salesrep=%s AND id IN (%s)', \    ('John Doe', (1, 2, 3))) conn.execute_query('SELECT * FROM empl WHERE id IN (%s)', (tuple(xrange(4)),)) conn.execute_query('SELECT * FROM empl WHERE id IN (%s)', \    (tuple([3, 5, 7, 11]),))#关闭连接conn.close()


最后修改时间:2021-04-21 13:21:53
文章转载自DBA技术分享,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论