暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

使用Python和OpenPlayground轻松探索大语言模型

672

用OpenPlayground在笔记本电脑上轻松探索大语言模型,使用简单的UI来试验各种大语言模型。

长按关注《Python学研大本营》,加入读者群,分享更多精彩

大语言模型或LLM是一种深度学习语言模型,旨在理解、解释和生成人类语言;它通常由数百万到数十亿的神经网络参数组成,并使用自我监督进行训练。著名的LLM的例子包括GPT-4、BERT和LLAMA。

获取LLM有时很棘手,因为必须遵守环境要求和规范,这成为学习LLM的把关人。幸运的是可以使用一个名为OpenPlayground的Python软件包在笔记本电脑上有效地试验各种LLM。

逐步探索OpenPlayground

Python软件包OpenPlayground是一个可以在笔记本电脑上运行的LLM游乐场,可以在这里试验模型、调整参数、进行模型比较,并通过友好的UI追踪日志历史记录。他们还使用了几个实体的著名LLM,如OpenAI、HuggingFace等等。

怎么才能开始使用OpenPlayground呢?首先,安装该软件包。

pip install openplayground

然后在终端上运行以下命令。

openplayground run

在终端上,将获得以下信息。

OpenPlayground正在运行,必须访问本地主机才能使用playground UI。

在UI中会看到三个部分:Playground,Compare和Settings。先去看看“Settings”选项卡,因为不提供必要的信息就无法工作。

当打开“Settings”时,会有一个需要选择的“Providers”部分。对于本文的例子,将使用来自OpenAI的那个。点击OpenAI,并提供API密钥,使openplayground可以访问所有模型,类似于下面的图片。

启用想要的模型,然后回到“Playground”选项卡。当已经选择了一个模型,可以在右侧使用其他参数。

该参数的存在是为了让用户轻松地探索和试验LLM模型的结果。尝试一个简单的提示:“给我创作一个关于公主和魔法王国的小故事”。

生成的文本将以绿色显示。如果启用“Show Probabilities”,如果模型允许可以得到标记生成概率。例如,“text-DaVinci-03”模型可以显示概率。再提交一次提示,并查看结果。

悬停在该标记上会显示该标记出现的概率有多高。此外,还有关于前5个标记的信息,这些信息可以成为可能生成的文本。

进入“Compare”选项卡,可以比较具有相同参数的各种LLM模型生成的文本。用之前例子的相同提示进行尝试。

“Compare”选项卡提供了同时生成文本的两个或多个不同LLM模型的信息。这些信息包括标记、模型生成文本的速度、所花的时间以及多少个字符。

尝试使用来自多个提供商的各种模型进行试验,以从使用OpenPlayground中获得更多价值。

总结

大语言模型或LLM是一个能够理解、解释和生成人类文本的模型。通过使用OpenPlayground,可以有一个简单的UI来探索和实验多个LLM。

推荐书单

《PyTorch深度学习简明实战》

本书针对深度学习及开源框架——PyTorch,采用简明的语言进行知识的讲解,注重实战。全书分为4篇,共19章。深度学习基础篇(第1章~第6章)包括PyTorch简介与安装、机器学习基础与线性回归、张量与数据类型、分类问题与多层感知器、多层感知器模型与模型训练、梯度下降法、反向传播算法与内置优化器。计算机视觉篇(第7章~第14章)包括计算机视觉与卷积神经网络、卷积入门实例、图像读取与模型保存、多分类问题与卷积模型的优化、迁移学习与数据增强、经典网络模型与特征提取、图像定位基础、图像语义分割。自然语言处理和序列篇(第15章~第17章)包括文本分类与词嵌入、循环神经网络与一维卷积神经网络、序列预测实例。生成对抗网络和目标检测篇(第18章~第19章)包括生成对抗网络、目标检测。

本书适合人工智能行业的软件工程师、对人工智能感兴趣的学生学习,同时也可作为深度学习的培训教程。

购买链接:https://item.jd.com/13512395.html

精彩回顾

《大模型技术的根基,解读注意力机制论文《Attention Is All You Need》和代码实现(下)》

《大模型技术的根基,解读注意力机制论文《Attention Is All You Need》和代码实现(上)》

《真实对比,OpenAI ChatGPT与谷歌Bard大比拼》

《深入浅析,一步步用GPT打造你的聊天机器人》

《ChatGPT插件使用攻略,解锁互联网新体验》

《使用ChatGPT API创建Python文档,竟然如此简单》

长按关注《Python学研大本营》,加入读者群
长按访问【IT今日热榜】,发现每日技术热点

文章转载自Python学研大本营,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论