暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

单挑力扣(LeetCode)SQL笔试题:1294. 不同国家的天气类型(难度:简单)

跟强哥学SQL 2023-03-13
231
题目:1294. 不同国家的天气类型
(通过次数14,134 | 提交次数21,523,通过率65.67%)
    国家表:Countries
    +---------------+---------+
    | Column Name | Type |
    +---------------+---------+
    | country_id | int |
    | country_name | varchar |
    +---------------+---------+
    country_id 是这张表的主键。
    该表的每行有 country_id 和 country_name 两列。
    天气表:Weather
    +---------------+---------+
    | Column Name | Type |
    +---------------+---------+
    | country_id | int |
    | weather_state | varchar |
    | day | date |
    +---------------+---------+
    (country_id, day) 是该表的复合主键。
    该表的每一行记录了某个国家某一天的天气情况。


    写一段 SQL 来找到表中每个国家在 2019 年 11 月的天气类型。
    天气类型的定义如下:当 weather_state 的平均值小于或等于15返回 Cold,当 weather_state 的平均值大于或等于 25 返回 Hot,否则返回Warm。
    你可以以任意顺序返回你的查询结果。
    查询结果格式如下所示:
    Countries table:
    +------------+--------------+
    | country_id | country_name |
    +------------+--------------+
    | 2 | USA |
    | 3 | Australia |
    | 7 | Peru |
    | 5 | China |
    | 8 | Morocco |
    | 9 | Spain |
    +------------+--------------+
    Weather table:
    +------------+---------------+------------+
    | country_id | weather_state | day |
    +------------+---------------+------------+
    | 2 | 15 | 2019-11-01 |
    | 2 | 12 | 2019-10-28 |
    | 2 | 12 | 2019-10-27 |
    | 3 | -2 | 2019-11-10 |
    | 3 | 0 | 2019-11-11 |
    | 3 | 3 | 2019-11-12 |
    | 5 | 16 | 2019-11-07 |
    | 5 | 18 | 2019-11-09 |
    | 5 | 21 | 2019-11-23 |
    | 7 | 25 | 2019-11-28 |
    | 7 | 22 | 2019-12-01 |
    | 7 | 20 | 2019-12-02 |
    | 8 | 25 | 2019-11-05 |
    | 8 | 27 | 2019-11-15 |
    | 8 | 31 | 2019-11-25 |
    | 9 | 7 | 2019-10-23 |
    | 9 | 3 | 2019-12-23 |
    +------------+---------------+------------+
    Result table:
    +--------------+--------------+
    | country_name | weather_type |
    +--------------+--------------+
    | USA | Cold |
    | Austraila | Cold |
    | Peru | Hot |
    | China | Warm |
    | Morocco | Hot |
    +--------------+--------------+
    USA 11 月的平均 weather_state 为 (15) 1 = 15 所以天气类型为 Cold。
    Australia 11 月的平均 weather_state 为 (-2 + 0 + 3) 3 = 0.333 所以天气类型为 Cold。
    Peru 11 月的平均 weather_state 为 (25) 1 = 25 所以天气类型为 Hot。
    China 11 月的平均 weather_state 为 (16 + 18 + 21) 3 = 18.333 所以天气类型为 Warm。
    Morocco 11 月的平均 weather_state 为 (25 + 27 + 31) 3 = 27.667 所以天气类型为 Hot。
    我们并不知道 Spain 在 11 月的 weather_state 情况所以无需将他包含在结果中。


    来源:力扣(LeetCode)
    链接:https://leetcode.cn/problems/weather-type-in-each-country

      #测试数据
      Create table If Not Exists Countries (country_id int, country_name varchar(20));
      Create table If Not Exists Weather (country_id int, weather_state int, day date);


      insert into Countries (country_id, country_name) values ('2', 'USA');
      insert into Countries (country_id, country_name) values ('3', 'Australia');
      insert into Countries (country_id, country_name) values ('7', 'Peru');
      insert into Countries (country_id, country_name) values ('5', 'China');
      insert into Countries (country_id, country_name) values ('8', 'Morocco');
      insert into Countries (country_id, country_name) values ('9', 'Spain');


      insert into Weather (country_id, weather_state, day) values ('2', '15', '2019-11-01');
      insert into Weather (country_id, weather_state, day) values ('2', '12', '2019-10-28');
      insert into Weather (country_id, weather_state, day) values ('2', '12', '2019-10-27');
      insert into Weather (country_id, weather_state, day) values ('3', '-2', '2019-11-10');
      insert into Weather (country_id, weather_state, day) values ('3', '0', '2019-11-11');
      insert into Weather (country_id, weather_state, day) values ('3', '3', '2019-11-12');
      insert into Weather (country_id, weather_state, day) values ('5', '16', '2019-11-07');
      insert into Weather (country_id, weather_state, day) values ('5', '18', '2019-11-09');
      insert into Weather (country_id, weather_state, day) values ('5', '21', '2019-11-23');
      insert into Weather (country_id, weather_state, day) values ('7', '25', '2019-11-28');
      insert into Weather (country_id, weather_state, day) values ('7', '22', '2019-12-01');
      insert into Weather (country_id, weather_state, day) values ('7', '20', '2019-12-02');
      insert into Weather (country_id, weather_state, day) values ('8', '25', '2019-11-05');
      insert into Weather (country_id, weather_state, day) values ('8', '27', '2019-11-15');
      insert into Weather (country_id, weather_state, day) values ('8', '31', '2019-11-25');
      insert into Weather (country_id, weather_state, day) values ('9', '7', '2019-10-23');
      insert into Weather (country_id, weather_state, dayvalues ('9''3''2019-12-23');
      解题思路:
      Countries表保存了所有的国家信息。
      Weather表保存了所有国家每一天的天气温度。
      题目要求:统计每个国家2019年11月份的温度类型。温度类型根据这一个月内的平均气温决定的。
      那么,可以先根据国家分组,得出2019年11月份的平均气温。
      再使用CASE WHEN将平均气温转换为气温类型。
      参考SQL:
        select
        max(b.country_name) country_name,
        case when avg(a.weather_state) <= 15 then 'Cold'
        when avg(a.weather_state) >= 25 then 'Hot'
        else 'Warm'
        end weather_type
        from Weather a
        left join Countries b
        on a.country_id = b.country_id
        where a.day between '2019-11-01' and '2019-11-30'
        group by a.country_id;

        单挑力扣(LeetCode)SQL笔试题:1241. 每个帖子的评论数(难度:简单)
        单挑力扣(LeetCode)SQL笔试题:1251. 平均售价(难度:简单)
        单挑力扣(LeetCode)SQL笔试题:1280. 学生们参加各科测试的次数(难度:简单)


        笔试题合集免费领取方法


        方法一:关注公众号【跟强哥学SQL】,回复关键字【力扣】获取链接。

        方法二:访问【SQL网】:https://sql.wang/sql-leetcode/sql-exercise



        文章转载自跟强哥学SQL,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

        评论