暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

matlab贝叶斯隐马尔可夫hmm模型实现

拓端数据部落 2023-04-13
292

全文下载链接:http://tecdat.cn/?p=7973


贝叶斯隐马尔可夫模型是一种用于分割连续多变量数据的概率模型。该模型将数据解释为一系列隐藏状态生成点击文末“阅读原文”获取完整代码数据


相关视频



态都是重尾分布的有限混合,具有特定于状态的混合比例和共享的位置/分散参数。

该模型中的所有参数都配备有共轭先验分布,并通过变化的贝叶斯(vB)推理算法学习,其本质上与期望最大化相似。该算法对异常值具有鲁棒性,并且可以接受缺失值。

本文从未知的BRHMM生成一组数据序列 参数,并仅从这些数据中估算出 生成它们的模型。结果绘制为 时间序列

 设置状态,符号和特征的数量 

NumState=2;

NumSym=3;

NumFeat=5;

 设置序列数,每个序列点数和缺失值 

NumSeq=2;

NumPoint=100;

NumMiss=20;

 设置参数生成选项。TransParam=1/5

EmissParam=1/5;

LocParam=2;

DispParam=5;

 设置采样选项 

NumDeg=5;

NumObs=1000;

 打印 和显示状态 

fprintf('\\n')

fprintf('Sampling data ... ')

 生成用于采样的参数 

\[Trans,Emiss,Loc,Disp\]=GenParam(NumState,NumSym,NumFeat,...

TransParam,EmissParam,LocParam,DispParam);



点击标题查阅往期内容


用机器学习识别不断变化的股市状况—隐马尔科夫模型(HMM)股票指数预测实战


左右滑动查看更多


01

02

03

04



 创建用于采样的模型 

Obj= bhnn(NumState,NumSym,NumFeat);

 设置超参数 

Obj.TransWeight=Trans;

Obj.TransStren(:)=NumObs;

Obj.EmissWeight=Emiss;

Obj.EmissStren(:)
=NumObs;

Obj.CompLoc=Loc;

Obj.CompScale(:)=NumObs;

Obj.CompDisp=Disp;

Obj.CompPrec(:)
=max(NumObs,NumFeat);

 采样数据并随机删除值 

 更新状态 

fprintf('Done\\n')

fprintf('Estimating model ... ')

 创建估计模型 

Obj=BHMM(NumState,NumSym,NumFeat);

 约束过渡参数 

Obj.TransWeight=Trans;

Obj.TransStren(:)=NumObs;

 估计模型和状态概率 

 更新状态 

 绘制结果 

% 更新状态 
fprintf('Done\\n')

fprintf('\\n')

end




本文摘选matlab贝叶斯隐马尔可夫hmm模型实现,点击“阅读原文”获取全文完整资料。





点击标题查阅往期内容

隐马尔可夫模型(HMM)识别不断变化的股市状况股票指数预测实战
马尔可夫Markov区制转移模型分析基金利率
马尔可夫区制转移模型Markov regime switching
时变马尔可夫区制转换MRS自回归模型分析经济时间序列
马尔可夫转换模型研究交通伤亡人数事故时间序列预测
如何实现马尔可夫链蒙特卡罗MCMC模型、Metropolis算法?
Matlab用BUGS马尔可夫区制转换Markov switching随机波动率模型、序列蒙特卡罗SMC、M H采样分析时间序列
R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机波动率SV模型、粒子滤波、Metropolis Hasting采样时间序列分析
matlab用马尔可夫链蒙特卡罗 (MCMC) 的Logistic逻辑回归模型分析汽车实验数据
stata马尔可夫Markov区制转移模型分析基金利率
PYTHON用时变马尔可夫区制转换(MRS)自回归模型分析经济时间序列
R语言使用马尔可夫链对营销中的渠道归因建模
matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计
R语言隐马尔可夫模型HMM识别不断变化的股票市场条件
R语言中的隐马尔可夫HMM模型实例
用机器学习识别不断变化的股市状况—隐马尔科夫模型(HMM)
Matlab马尔可夫链蒙特卡罗法(MCMC)估计随机波动率(SV,Stochastic Volatility) 模型
MATLAB中的马尔可夫区制转移(Markov regime switching)模型
Matlab马尔可夫区制转换动态回归模型估计GDP增长率
R语言马尔可夫区制转移模型Markov regime switching
stata马尔可夫Markov区制转移模型分析基金利率
R语言如何做马尔可夫转换模型markov switching model
R语言隐马尔可夫模型HMM识别股市变化分析报告
R语言中实现马尔可夫链蒙特卡罗MCMC模型


欲获取全文文件,请点击左下角“阅读原文”。


欲获取全文文件,请点击左下角“阅读原文”。


文章转载自拓端数据部落,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论