暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

R语言广义线性模型(GLMs)算法和零膨胀模型分析

拓端数据部落 2023-03-24
283

原文链接:http://tecdat.cn/?p=14887


广义线性模型(GLM) 是通过连接函数,把自变量线性组合和因变量的概率分布连起来,该概率分布可以是高斯分布、二项分布、多项式分布、泊松分布、伽马分布、指数分布点击文末“阅读原文”获取完整代码数据

相关视频


连接函数有:

  • 平方根连接 (用于泊松模型)

考虑一些均值μ和方差σ2的随机变量Y。利用泰勒展开式

假使,考虑平方根变换g(y)= \ sqrt {y} g(y)= y,则第二个等式变为

因此,通过平方根变换,我们具有方差稳定性,可以将其解释为一定的同调性。

  • 伯努利模型的对数函数

假设变量是泊松变量,

先前的模型看起来像是伯努利回归分析,其中H作为链接函数,\ mathbb {P}

因此,现在假设代替观察N,我们观察到Y = 1(N> 0)。在那种情况下,运行带有对数链接函数的伯努利回归,首先与对原始数据运行泊松回归,然后在我们的二进制变量零和非零上使用。让我们先生成一些模拟数据,比较从标准逻辑回归得到的eλx和px


regPois = glm(Y~.,data=base,family=poisson(link="log"))
regBinom = glm((Y==0)~.,data=base,family=binomial(link="probit"))

 

 

 


点击标题查阅往期内容


数据分享|R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据


左右滑动查看更多


01

02

03

04



如果px \是从Bernoulli回归中获得的,并且具有连接功能,该怎么办?


plot(prob,1-exp(-lambda),xlim=0:1,ylim=0:1)
abline(a=0,b=1,lty=2,col="red")

 

拟合很好,现在,如果我们对婚姻出轨数据集,由雷·费尔,在1978年出版的  期刊政治经济学  (含563个观察,九个变量)进行建模:


prob = predict(regBinom, type="response")
plot(prob,exp(-lambda),xlim=0:1,ylim=0:1)
abline(a=0,b=1,lty=2,col="red")

 

在这种情况下,这两种模型结果是非常不同的。第二个模型也是


plot(prob,1-exp(-lambda),xlim=0:1,ylim=0:1)
abline(a=0,b=1,lty=2,col="red")

 

 

 

我们如何解释呢?是因为泊松模型不好吗?我们在这里运行零膨胀模型进行比较,


summary(regZIP)
 
Count model coefficients (poisson with log link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.002274 0.048413 -0.047 0.963
X1 1.019814 0.026186 38.945 <2e-16 ***
X2 1.004814 0.024172 41.570 <2e-16 ***
Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.90190 2.07846 -2.358 0.0184 *
X1 -2.00227 0.86897 -2.304 0.0212 *
X2 -0.01545 0.96121 -0.016 0.9872
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

由于零的膨胀,我们在这里拒绝了泊松分布的假设,可以使用对数连接来检查泊松分布是否是一个好的模型。

 

 




点击文末“阅读原文”

获取全文完整代码数据资料


本文选自《R语言广义线性模型(GLMs)算法和零膨胀模型分析》。


点击标题查阅往期内容

数据分享|R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据
R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例
非线性混合效应 NLME模型对抗哮喘药物茶碱动力学研究
生态学模拟对广义线性混合模型GLMM进行功率(功效、效能、效力)分析power analysis环境监测数据
有限混合模型聚类FMM、广义线性回归模型GLM混合应用分析威士忌市场和研究专利申请数据
如何用潜类别混合效应模型(Latent Class Mixed Model ,LCMM)分析老年痴呆年龄数据
R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据
R语言 线性混合效应模型实战案例
R语言混合效应逻辑回归(mixed effects logistic)模型分析肺癌数据
R语言如何用潜类别混合效应模型(LCMM)分析抑郁症状
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究
R语言建立和可视化混合效应模型mixed effect model
R语言LME4混合效应模型研究教师的受欢迎程度
R语言 线性混合效应模型实战案例
R语言用Rshiny探索lme4广义线性混合模型(GLMM)和线性混合模型(LMM)
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究
R语言如何解决线性混合模型中畸形拟合(Singular fit)的问题
基于R语言的lmer混合线性回归模型
R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型
R语言分层线性模型案例
R语言用WinBUGS 软件对学术能力测验(SAT)建立分层模型
使用SAS,Stata,HLM,R,SPSS和Mplus的分层线性模型HLM
R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型
SPSS中的多层(等级)线性模型Multilevel linear models研究整容手术数据
用SPSS估计HLM多层(层次)线性模型模型


文章转载自拓端数据部落,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论