排行
数据库百科
核心案例
行业报告
月度解读
大事记
产业图谱
中国数据库
向量数据库
时序数据库
实时数据库
搜索引擎
空间数据库
图数据库
数据仓库
大调查
2021年报告
2022年报告
年度数据库
2020年openGauss
2021年TiDB
2022年PolarDB
2023年OceanBase
首页
资讯
活动
大会
学习
课程中心
推荐优质内容、热门课程
学习路径
预设学习计划、达成学习目标
知识图谱
综合了解技术体系知识点
课程库
快速筛选、搜索相关课程
视频学习
专业视频分享技术知识
电子文档
快速搜索阅览技术文档
文档
问答
服务
智能助手小墨
关于数据库相关的问题,您都可以问我
数据库巡检平台
脚本采集百余项,在线智能分析总结
SQLRUN
在线数据库即时SQL运行平台
数据库实训平台
实操环境、开箱即用、一键连接
数据库管理服务
汇聚顶级数据库专家,具备多数据库运维能力
数据库百科
核心案例
行业报告
月度解读
大事记
产业图谱
我的订单
登录后可立即获得以下权益
免费培训课程
收藏优质文章
疑难问题解答
下载专业文档
签到免费抽奖
提升成长等级
立即登录
登录
注册
登录
注册
首页
资讯
活动
大会
课程
文档
排行
问答
我的订单
首页
专家团队
智能助手
在线工具
SQLRUN
在线数据库即时SQL运行平台
数据库在线实训平台
实操环境、开箱即用、一键连接
AWR分析
上传AWR报告,查看分析结果
SQL格式化
快速格式化绝大多数SQL语句
SQL审核
审核编写规范,提升执行效率
PLSQL解密
解密超4000字符的PL/SQL语句
OraC函数
查询Oracle C 函数的详细描述
智能助手小墨
关于数据库相关的问题,您都可以问我
精选案例
新闻资讯
云市场
登录后可立即获得以下权益
免费培训课程
收藏优质文章
疑难问题解答
下载专业文档
签到免费抽奖
提升成长等级
立即登录
登录
注册
登录
注册
首页
专家团队
智能助手
精选案例
新闻资讯
云市场
微信扫码
复制链接
新浪微博
分享数说
采集到收藏夹
分享到数说
首页
/
本地知识库对LLM的性能优化
本地知识库对LLM的性能优化
白鳝的洞穴
2023-06-12
1176
昨天一个跑了220个小时的微调训练完成了,主要任务是想在CHATGLM-6B上微调出一个能够较为精确的诊断数据库错误信息的对话模型来。
不过这个等了将近十天的训练最后的结果令人失望,比起我之前做的一个样本覆盖更小的训练来,差的还是挺大的。
这样的结果还是有点令人失望的,这个模型基本上是没有实用价值的。看样子需要重新调整参数与训练集,再做一次训练。大语言模型的训练是一场军备竞赛,没有好的装备是玩不起来的。看样子我们也必须要升级一下实验室的装备了,否则没有几个十天可以浪费。
从最近的几次失败的微调训练来看,微调训练这条路也并不容易完成。不同的任务目标混杂在一起跑训练,可能不同的任务目标需要的训练参数不同,使最终的训练集无法满足某些任务的需求。因此PTUNING只适合某个十分确定的任务,不一定适合混合任务,以混合任务为目的的模型,可能需要用FINETUNE。这和前几天我在和一个朋友交流时大家的观点类似。
实际上因为训练模型难度比较大,一些人已经放弃了自己训练模型,而采用将本地知识库矢量化后进行较为精准的检索,然后通过AUTOPROMPT将检索后的结果生成自动提示,去问打语音模型。利用langchain很容易实现这个目标。
这个工作的原理是将本地文档通过加载器加载为文本,然后对文本进行切分行程文本片段,经过编码后写入向量存储中功查询使用。查询结果出来后,通过Prompt Template自动形成提问用的提示,去询问LLM,LLM生成最后的回答。
这项工作里有另个要点,一个是较为精准的搜索到本地知识库中的知识,这个通过向量存储于搜索来实现,目前针对中英文的本地知识库的向量化与搜索的解决方案很多,可以选择某个对你的知识库比较友好的方案来使用。
上面是一个在vicuna-13b上通过关于OB的知识库进行的问答,上面的是没有使用本地知识库,直接使用LLM的能力的回答,下面是加载了本地知识库后的回答。可以看出性能提升还是挺明显的。
我们再来看看刚才那个ORA错误的问题,在没有使用本地知识库之前,LLM基本上是胡说八道的,而加载了本地知识库之后,这个回答还是中规中矩的,文中的错别字也是我们知识库中的错误。实际上PTUNING使用的训练集也是通过这个本地知识库生成出来的。
从最近我们踩过的坑可以收获一些经验。首先ptuning的难度比我们想象得要高得多,虽然说ptuning比finetune需要的装备低一点,不过训练难度一点都不低。其次是通过Langchain和autoprompt利用本地知识库来改善LLM能力效果不错,对于大多数企业应用来说,只要把本地知识库梳理好,选择合适的矢量化方案,应该都能获得不比PTUNING/FINETUNE差的效果。第三,还是上回说的那个问题,LLM的能力至关重要。必须选择一个能力较强的LLM作为基础模型来使用。任何嵌入式模型都只能局部改善能力,不能起决定性的作用。第四,对于数据库相关的知识,vicuna-13b的能力确实不错。
今天一大早还要去客户那边做个交流,早上时间有限,就简单写几句吧。大家对此有何心得,欢迎留言讨论(讨论仅你我可见),我也是在这条路上孤独行走,希望有同路人指点一二。
文章转载自
白鳝的洞穴
,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。
评论
领墨值
有奖问卷
意见反馈
客服小墨