暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

大模型发展这么久,为什么到GPT3.5才具有了真正的智能?

原创 小灰灰007 2023-07-10
974

ChatGPT从字面上可以分解成两个词Chat+GPT。Chat是聊天的意思,GPT是Generative Pre-trained Transformer的缩写,生成式预训练语言模型,使用Transformer架构来处理自然语言处理(NLP)任务。也就是说GPT能理解自然语言,大家能够用汉语、英语等自然语言跟GPT交流,而且它有大量的训练语料,超大规模的训练参数(上千亿),能自己生成内容,并不是像搜索引擎一样只是简单的检索,就算一个它不知道的东西,它都可以根据已掌握的数据,生成一个答案,虽然有时候可能在胡说八道,从这个角度,确实已经很像人类了。

总结一下就是,他有丰富的知识库,是一个知识渊博的智者,当你向他提问时,他能听懂你的提问,并且可以非常智能的生成答案(注意这里不是检索,所以你会发现每次向GPT提问同样的问题,得到的答案都是不一样的)

大家通过上面的阅读知道,GPT(Generative Pre-trained Transformer)生成式预训练语言模型。也就是这个语言模型是基于Transformer的,Transformer是一种基于注意力机制的神经网络模型,最早由谷歌公司提出,其最初目的是用于自然语言处理任务,如机器翻译、文本摘要、语音识别等。相比于传统的循环神经网络模型,如LSTM和GRU,Transformer模型具有更好的并行化能力和更短的训练时间,在处理长序列任务方面表现出色,因此在自然语言处理领域得到了广泛应用。

其实GPT不是OpenAI公司的原创,而是由谷歌公司发明。是不是跟当年操作系统的图形用户界面其实是施乐公司最新发明的,却被乔布斯窃取到并应用到苹果的系统上一样。包括后来的iphone手机,大家也可以搜一下,其实所有的设计都是借鉴了其他公司的产品,但是乔布斯把他们组合并创新成了一件最伟大的艺术品,从而开启了一个全新的移动互联网时代,所以有时候并不一定什么都要原创,站在巨人的肩膀上来微创新,有时候更容易出成果。

上面扯的有点远了,我们回到为什么GPT3.5才算真正的人工智能这个问题上。

2018 年 OpenAI 采用 Transformer Decoder 结构在大规模语料上训练了 GPT1 模型,揭开了NLP模型预训练+微调的新范式。2019 年,OpenAI 提出了 GPT2,GPT2 拥有和 GPT1 一样的模型结构,但得益于更多和更高的数据质量以及新引入的多任务学习方式,语言生成能力得到大幅提升。之后由于 GPT 采用 Decoder 单向结构天然缺陷是无法感知上下文,Google 很快提出了 Encoder 结构的 Bert 模型可以感知上下文,效果上也明显有提升,同年 Google 采用Encoder-Decoder 结构,提出了 T5 模型,从此大规模预训练语言模型朝着三个不同方向发展。

也就是说在GPT3.0之前,谷歌的Bert 模型是远超OpenAI 的GPT模型的。这里补充一个知识点,GPT3.0之前都是开源的,OpenAI由于一些商业等多方面的考虑,从GPT3.5开始,模型都是闭源的。

直到2020 年 OpenAI 提出了 GPT3 将 GPT 模型提升到全新的高度,其训练参数达到了 1750 亿,训练语料超45TB,自此GPT系列模型的数据飞轮便转动起来,超大模型时代开启, NLP 任务走向了预训练+情境学习新路线。由于 GPT3 可以产生通顺的句子,但是准确性等问题一直存在,于是出现了InstructGPT、ChatGPT 等后续优化的工作,通过加入强化学习模式实现了模型可以理解人类指令的含义,会甄别高水准答案,质疑错误问题和拒绝不适当的请求等。

从GPT3.5,GPT突然涌现出了“乌鸦”能力,之前的都可以理解成量变,一种鹦鹉学舌的能力,并没有真正的智能。

可能是大力出奇迹,我感觉跟人脑是一个道理,一个神经元没啥智慧,一百万个、一百亿个可能也没啥智慧,不过增加到一千亿个神经元连接,突然就有智慧了,涌现出了能力。这是一件很玄学的事情,包括现在世界顶级的人工智能专业也无法解释这种现象,我们只能理解成大力出奇迹。

这里拿出一点篇幅来普及一下什么“鹦鹉学舌”的假人工智障,什么是拥有“乌鸦”能力的真人工智能

所谓鹦鹉学舌,就是东施效颦。没有GPT之前,几乎所有的自然语言处理都遵循着这一范式。他没有真的懂你的意思,只是一种模式匹配,比如之前的语音助手,只能识别有限的场景,比如你问他,帮我导航去天安门,他可以给你答案,但如果你让问他火星怎么去,他可能就回答不了你,因为他的数据库里没有这个问题的答案。也就是说,他只能回答在自己的数据库里有对应答案的问题,一旦你的问题超出了他的数据范围,他是没办法给你回复的。无法做到根据现有的数据生成新的数据,但是世界的问题千千万,不可能穷尽所有的可能把所有的问题答案都事先准备好,这也是之前的人工智能大家感觉并不智能的原因,因为他的底层实际上还是在做匹配。我举一个程序员都能理解的例子,比如你要实现一个不同条件得到不同结果的功能,我相信大部分程序员都是这样实现的。

if($sex == '男' && $age < 18){ echo "小男孩"; }else if($sex == '女' && $age < 18){ echo "小女孩"; }else if($sex == '男' && $age >= 18 && $age <= 35){ echo "小伙子"; }else if($sex == '女' && $age >= 18 && $age <= 35){ echo "小姑娘"; }else{ echo "老年人"; }

如果新增了条件,还是要新增一堆的if else才能匹配更多的情况。


而乌鸦不一样,小时候我们读过乌鸦喝水的故事,乌鸦是有真正智慧的,他能真的读懂你要表达的意思。这里我们引用华人最厉害的AI学者之一朱松纯教授,在2017年写的一篇思考人工智能和智能本质的文章,通过这篇文章来理解乌鸦是如何感知、认知、推理、学习、执行的。


乌鸦通过观察,自主串通了

  • 汽车能压碎坚果

  • 红绿灯能控制汽车

  • 车能撞死我

这三件事情,从而利用红绿灯和汽车,来帮自己达到“安全打开坚果”这一任务结果。

如果类比成机器学习模型,过往“鹦鹉学舌”范式的解法,是要求所有乌鸦可以共享一个大脑,它们有很清晰的优化目标,即“保住性命的前提下打开坚果”。它们的方式是,随机尝试所有事件的组合,并向着最优解的方向不断演化。

但现实世界的乌鸦无法共享大脑,也不能去冒着死亡风险去尝试所有可能。乌鸦只有一次机会,把观测到的两个现象,产生了一个新的可能性,并应用在一个全新的场景下。这里最接近的词汇可能是“inference”,是“基于证据和逻辑推演,得到结论”的过程,有的时候,还要加入很多猜测、抽象、泛化。举个例子,这篇文章把朱教授对于乌鸦的比喻,跟ChatGPT最本质的能力联系起来,就是在做inferencing这件事。

但很明显,inferencing不是乌鸦智能的全部。而且在机器学习领域里,inferencing特指使用训练好的深度学习模型来预测新的数据这一件事,会产生误解。其他词汇也有类似问题,所以我们在自己文章里,会直接使用“乌鸦能力”来指代ChatGPT的新能力。在对外交流时,我们没办法每次都把乌鸦能力是什么解释一遍,所以我们会用“理解”能力来进行指代。从“乌鸦”到“理解”,当然是一个信息量损失很大的过度概括。但是好处是可以把ChatGPT的本质能力凸显出来。过往互联网的两次能力跃进一次来自于搜索,一次来自于推荐,现在ChatGPT带来了“理解”,也非常有结构感。

「喜欢这篇文章,您的关注和赞赏是给作者最好的鼓励」
关注作者
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文章的来源(墨天轮),文章链接,文章作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论