暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

技术分享 | 深入MySQL—深度解析存储引擎+索引(一)

博森瑞 2021-06-24
563


【一】InnoDB 和MYISAM 存储引擎的区别?


解答:

联机事务处理OLTP(on-line transaction processing):传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。
联机分析处理
OLAP(On-Line Analytical Processing):是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。

InnoDB:
InnoDB 存储引擎支持事务、支持外键、支持非锁定读、行锁设计其设计主要面向OLTP 应用。
InnoDB 存储引擎表采用聚集的方式存储,因此每张表的存储顺序都按主键的顺序存放,如果没有指定主键,InnoDB 存储引擎会为每一行生成一个6字节的ROWID并以此作为主键。
InnoDB 存储引擎通过MVCC 获的高并发性,并提供了插入缓冲、二次写、自适应哈希索引和预读等高性能高可用功能。
InnoDB 存储引擎默认隔离级别为REPEATABLE_READ(重复读)并采用next-key locking(间隙锁)来避免幻读。

MySIAM:
MYISAM 存储引擎不支持事务、表锁设计、支持全文索引其设计主要面向OLAP 应用
MYISAM 存储引擎表由frmMYD MYI 组成,frm 文件存放表格定义,MYD 用来存放数据文件,MYI 存放索引文件。MYISAM 存储引擎与众不同的地方在于它的缓冲池只缓存索引文件而不缓存数据文件,数据文件的缓存依赖于操作系统。

操作区别:
MYISAM 保存表的具体行数,不带where 是可直接返回。InnoDB 要扫描全表。
DELETE 表时,InnoDB 是一行一行的删除,MYISAM 是先drop表,然后重建表。
InnoDB 跨平台可直接拷贝使用,MYISAM 不行;
InnoDB 表格很难被压缩,MYISAM 可以。

选择:
MyISAM相对简单所以在效率上要优于InnoDB。如果系统读多,写少。对原子性要求低。那么MyISAM最好的选择。且MyISAM恢复速度快。可直接用备份覆盖恢复。
InnoDB 更适合系统读少,写多的时候,尤其是高并发场景。

以下是一个具体的选择场景来自:
https://www.iidba.com/thread-290065-1-1.html


【二】什么是索引?你知道Mysql 有哪些索引?分别介绍一下

解答:

在关系数据库中,索引是一种单独的、物理的对数据库表中一列或多列的值进行排序的一种存储结构,它是某个表中一列或若干列值的集合和相应的指向表中物理标识这些值的数据页的逻辑指针清单。——百度百科

索引是对数据库表中一或多个列的值进行排序的结构,是帮助MySQL高效获取数据的数据结构(数据库是磁盘文件,磁盘IO 的代价较高,所以采用索引减少IO 次数)。

Mysql 中常用的索引有B+ 树索引(包括普通索引、唯一索引、主键索引),哈希索引,全文索引,R-TREE 索引(空间索引,主要用于地理空间数据类型,很少使用)。

Mysql 传统意义上的索引为B+ 树索引,B+ 树索引的本质就是B+ 树在数据库中的实现,由于B+ 树的高扇出性,数据库中的B+ 树的高一般为2-4层,因此查找某一键值的行记录只需2-4次IO,大概0.02~0.04秒。

(扇出性:是指该模块直接调用的下级模块的个数。扇出大表示模块的复杂度高,需要控制和协调过多的下级模块)

B+ 树索引主要分为聚集索引和辅助索引。
聚集索引是根据每张表的主键建造的一棵B+ 树,叶子节点中存放的是整张表的行记录。一张表只能有一个聚集索引。因为聚集索引在逻辑上是连续的,所以它对于主键的排序查找和范围查找速度非常快。

辅助索引与聚集索引不同的地方在于,辅助索引不是唯一的,它的叶子节点只包含行记录的部分数据以及对应聚集索引的节点位置。通过辅助索引来查找数据时,先遍历辅助索引找到对应主键索引,再通过主键索引查找对应记录。

MYISAM 中主键索引和辅助索引都相当上述辅助索引,索引页中存放的是主键和指向数据页的偏移量,数据页中存放的是主键和该主键所属行记录的地址空间。唯一的区别是MYISAM 中主键索引不能重复,辅助索引可以。

B+ 树索引从使用上来说还有联合索引和覆盖索引
联合索引是指对表上的多个列进行索引。它对对应多个列的指定获取比较快。另外一个好处是联合索引对第二个键已经排好序了,所以对两个列的排序获取可以避免多做一次排序操作。
覆盖索引其实更算一种思想,能够从辅助索引中获取信息,就不需要查询聚集索引中的数据。使用辅助索引的好处在于辅助索引包含的信息少,所以大小远小于聚集索引,因此可以大大减少IO 操作。

哈希索引是一种自适应的索引
数据库会根据表的使用情况自动生成哈希索引,我们人为是没办法干预的。
InnoDB 储存引擎采用的哈希函数为除法散列方式,采用的冲突处理方法为链地址法。它指定查询的速度很快,但是范围查询就无能为力了。

全文索引用于实现关键词搜索。
但它只能根据空格分词,因此不支持中文。

【三 】 索引的优缺点?哪些情况适合建索引哪些情况不适合呢?

解答:

索引的优点:
1、通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
2、可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
3、可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。
4、在使用分组和排序 子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。
5、通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。

索引的缺点:
1、创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。
2、索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。
3、当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。

哪些情况需要加索引?
1、在经常需要搜索的列上,可以加快搜索的速度;
2、在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;
3、在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;
4、在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;
5、在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;
6、在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。

哪些情况不需要加索引?
1、对于那些在查询中很少使用或者参考的列不应该创建索引。
这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。

2、对于那些只有很少数据值的列也不应该增加索引。
这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。

3、对于那些定义为text, image和bit数据类型的列不应该增加索引。
这是因为,这些列的数据量要么相当大,要么取值很少。

4、当修改性能远远大于检索性能时,不应该创建索引。
这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改性能远远大于检索性能时,不应该创建索引。


如果在学习中有疑问或者想要了解更多DBA相关前线经验,可以在私信留言,老师会及时回复相关的疑问,也可以联系老师加入技术交流分享群,努力提升自己。

  

推荐阅读



最后再次感谢大家一如既往的支持与鼓励



      

快来点“在看”





文章转载自博森瑞,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论