作者
digoal
日期
2019-12-04
标签
PostgreSQL , 逻辑decode , logical_decoding_work_mem
背景
PostgreSQL 13增加参数logical_decoding_work_mem控制每个decode(wal sender process)在decode walrecord时的buffer大小,当超过buffer时,写磁盘。
如果上游(wal sender端)的wal产生量大,decoding量大,增加logical_decoding_work_mem,可以减少写local disk的io,提高性能。
同时需要注意服务器的内存是否足够,最多可能耗费logical_decoding_work_mem*max_wal_senders
logical_decoding_work_mem (integer)
Specifies the maximum amount of memory to be used by logical decoding, before some of the decoded changes are written to local disk. This limits the amount of memory used by logical streaming replication connections. It defaults to 64 megabytes (64MB). Since each replication connection only uses a single buffer of this size, and an installation normally doesn't have many such connections concurrently (as limited by max_wal_senders), it's safe to set this value significantly higher than work_mem, reducing the amount of decoded changes written to disk.
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=cec2edfa7859279f36d2374770ca920c59c73dd8
```
Add logical_decoding_work_mem to limit ReorderBuffer memory usage.
Instead of deciding to serialize a transaction merely based on the
number of changes in that xact (toplevel or subxact), this makes
the decisions based on amount of memory consumed by the changes.
The memory limit is defined by a new logical_decoding_work_mem GUC,
so for example we can do this
SET logical_decoding_work_mem = '128kB'
to reduce the memory usage of walsenders or set the higher value to
reduce disk writes. The minimum value is 64kB.
When adding a change to a transaction, we account for the size in
two places. Firstly, in the ReorderBuffer, which is then used to
decide if we reached the total memory limit. And secondly in the
transaction the change belongs to, so that we can pick the largest
transaction to evict (and serialize to disk).
We still use max_changes_in_memory when loading changes serialized
to disk. The trouble is we can't use the memory limit directly as
there might be multiple subxact serialized, we need to read all of
them but we don't know how many are there (and which subxact to
read first).
We do not serialize the ReorderBufferTXN entries, so if there is a
transaction with many subxacts, most memory may be in this type of
objects. Those records are not included in the memory accounting.
We also do not account for INTERNAL_TUPLECID changes, which are
kept in a separate list and not evicted from memory. Transactions
with many CTID changes may consume significant amounts of memory,
but we can't really do much about that.
The current eviction algorithm is very simple - the transaction is
picked merely by size, while it might be useful to also consider age
(LSN) of the changes for example. With the new Generational memory
allocator, evicting the oldest changes would make it more likely
the memory gets actually pfreed.
The logical_decoding_work_mem can be set in postgresql.conf, in which
case it serves as the default for all publishers on that instance.
Author: Tomas Vondra, with changes by Dilip Kumar and Amit Kapila
Reviewed-by: Dilip Kumar and Amit Kapila
Tested-By: Vignesh C
Discussion: https://postgr.es/m/688b0b7f-2f6c-d827-c27b-216a8e3ea700@2ndquadrant.com
```
PostgreSQL 许愿链接
您的愿望将传达给PG kernel hacker、数据库厂商等, 帮助提高数据库产品质量和功能, 说不定下一个PG版本就有您提出的功能点. 针对非常好的提议,奖励限量版PG文化衫、纪念品、贴纸、PG热门书籍等,奖品丰富,快来许愿。开不开森.
9.9元购买3个月阿里云RDS PostgreSQL实例
PostgreSQL 解决方案集合
德哥 / digoal's github - 公益是一辈子的事.





