暂无图片
暂无图片
暂无图片
暂无图片
暂无图片
larochelle_neural_networks.pdf
302
116页
0次
2021-02-24
50墨值下载
Neural networks
Hugo Larochelle ( @hugo_larochelle )
Twitter / Université de Sherbrooke
FEEDFORWARD NEURAL NETWORK
2
What we’ll cover
how neural networks take input x and make predict f(x)
-
forward propagation
-
types of units
-
capacity of neural networks
how to train neural nets (classifiers) on data
-
loss function
-
parameter gradient computation with backpropagation
-
gradient descent algorithms
deep learning
-
dropout
-
batch normalization
-
unsupervised pre-training
...
Feedforward neural network
Hugo Larochelle
D
´
epartement d’informatique
Universit
´
e de Sherbrooke
hugo.larochelle@usherbrooke.ca
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
a(x)=b +
P
i
w
i
x
i
= b + w
>
x
h(x)=g(a(x)) = g(b +
P
i
w
i
x
i
)
x
1
x
d
w
{
g(·) b
h(x)=g(a(x))
a(x)=b
(1)
+ W
(1)
x
a(x)
i
= b
(1)
i
P
j
W
(1)
i,j
x
j
o(x)=g
(out)
(b
(2)
+ w
(2)
>
x)
1
Feedforward neural network
Hugo Larochelle
D
´
epartement d’informatique
Universit
´
e de Sherbrooke
hugo.larochelle@usherbrooke.ca
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
a(x)=b +
P
i
w
i
x
i
= b + w
>
x
h(x)=g(a(x)) = g(b +
P
i
w
i
x
i
)
x
1
x
d
w
{
g(·) b
h(x)=g(a(x))
a(x)=b
(1)
+ W
(1)
x
a(x)
i
= b
(1)
i
P
j
W
(1)
i,j
x
j
o(x)=g
(out)
(b
(2)
+ w
(2)
>
x)
1
...
Feedforward neural network
Hugo Larochelle
D
´
epartement d’informatique
Universit
´
e de Sherbrooke
hugo.larochelle@usherbrooke.ca
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
a(x)=b +
P
i
w
i
x
i
= b + w
>
x
h(x)=g(a(x)) = g(b +
P
i
w
i
x
i
)
x
1
x
d
bw
1
w
d
w
{
g(a)=a
g(a) = sigm(a)=
1
1+exp(a)
g(a) = tanh(a)=
exp(a)exp(a)
exp(a)+exp(a)
=
exp(2a)1
exp(2a)+1
g(a) = max(0,a)
g(a)=reclin(a) = max(0,a)
g(·) b
W
(1)
i,j
b
(1)
i
x
j
h(x)
i
h(x)=g(a(x))
a(x)=b
(1)
+ W
(1)
x
a(x)
i
= b
(1)
i
P
j
W
(1)
i,j
x
j
o(x)=g
(out)
(b
(2)
+ w
(2)
>
x)
1
1
1
......
1
......
...
Feedforward neural network
Hugo Larochelle
D
´
epartement d’informatique
Universit
´
e de Sherbrooke
hugo.larochelle@usherbrooke.ca
September 13, 2012
Abstract
Math for my slides “Feedforward neural network”.
f (x)
l(f (x
(t)
; ),y
(t)
)
r
l(f (x
(t)
; ),y
(t)
)
()
r
()
f(x)
c
= p(y = c|x)
x
(t)
y
(t)
l(f (x) ,y)=
P
c
1
(y=c)
log f(x)
c
= log f(x)
y
=
@
f(x)
c
log f(x)
y
=
1
(y=c)
f(x)
y
r
f (x)
log f(x)
y
=
1
f(x)
y
[1
(y=0)
,...,1
(y=C1)
]
>
=
e(c)
f(x)
y
1
x
of 116
50墨值下载
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文档的来源(墨天轮),文档链接,文档作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论

关注
最新上传
暂无内容,敬请期待...
下载排行榜
Top250 周榜 月榜