暂无图片
暂无图片
暂无图片
暂无图片
暂无图片
多标签分类:汉明损失和子集精度真的相互冲突吗?.pdf
151
11页
0次
2021-04-14
50墨值下载
Multi-label classification: do Hamming loss and
subset accuracy really conflict with each other?
Guoqiang Wu
Department of Computer Science and Technology, Tsinghua University
G. Wu, J. Zhu. Multi-label classification: do Hamming loss and subset accuracy
really conflict with each other? NeurIPS 2020
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
1/ 11
Guoqiang Wu (Tsinghua University)
Multi-label classification
Background
Multi-Label Classification (MLC) is a fundamental task where
each instance is associated with multiple labels simultaneously.
It has plenty of applications in reality, such as text classification,
image annotation, especially the recommendation system in
E-commercial platforms.
The efficient training of big data models can benefit from the
accelerated calculation of GPU(s). We use a high-performance
server with 8 RTX 2080Ti GPUs for MLC datasets (e.g. PASCAL
VOC and NUS-WIDE).
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
2/ 11
Guoqiang Wu (Tsinghua University)
Multi-label classification
of 11
50墨值下载
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文档的来源(墨天轮),文档链接,文档作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。
关注
最新上传
暂无内容,敬请期待...
下载排行榜
Top250 周榜 月榜