暂无图片
暂无图片
暂无图片
暂无图片
暂无图片
基于多模态对抗学习的无监督时间序列异常检测 - 黄训华, 张凤斌, 樊好义, 席亮.pdf
221
13页
0次
2021-11-10
免费下载
DOI
:
issn
JournalofCom
p
uterResearchandDevelo
p
ment
(
):
,
 
稿
:
;
:
 
:
(
)
Thisworkwassu
pp
ortedb
y
theNationalNaturalScienceFoundationofChina
(
)
 
:
(
zhan
g
fbhrbusteducn
)
 
 
 
 
(
 
 
)
(
stuhrbusteducn
)
MultimodalAdversarialLearnin
g
BasedUnsu
p
ervisedTimeSeriesAnomal
y
Detection
Huan
g
Xunhua
,
Zhan
g
Fen
g
bin
,
FanHao
y
i
,
andXiLian
g
(
Colle
g
eo
f
Com
p
uterScienceandTechnolo
gy
,
HarbinUniversit
y
o
f
ScienceandTechnolo
gy
,
Harbin
)
Abstract Timeseriesanomal
y
detectionisoneofthemostim
p
ortantresearchdirectionsin machine
learnin
g
,
whichaimstofindthe
p
atternsthatdeviatesi
g
nificantl
y
fromthenormalbehavioroftime
seriesHowever
,
mostoftheexistin
g
methodsforanomal
y
detectionoftimeseriesarebasedon
sin
g
lemodalit
y
feature learnin
g
,
which i
g
nores the relevance and com
p
lementarit
y
of the
characteristicdistributionoftimeseriesin multimodalit
y
s
p
ace
,
andconse
q
uentl
y
failstomakefull
useoftheexistin
g
informationforlearnin
g
Toalleviatetheabove
p
roblems
,
inthis
p
a
p
er
,
we
p
resent
atimeseriesanomal
y
detectionmodelbasedonmultimodaladversariallearnin
g
Firstl
y
,
weconvert
the ori
g
inal time series into the fre
q
uenc
y
domain to construct multimodalit
y
time series
re
p
resentationThen
,
based on the constructed multimodalit
y
re
p
resentation
,
we
p
ro
p
ose a
multimodal
g
eneratedadversarialnetwork modeltolearnnormaldata􀆳sdistributionsintimedomain
andfre
q
uenc
y
domain
j
ointl
y
Finall
y
,
b
y
modelin
g
theanomal
y
detection
p
roblem asthedata
reconstruction
p
roblemintimedomainandfre
q
uenc
y
domain
,
wemeasuretheanomal
y
scoreoftime
seriesfromboththetimedomainandfre
q
uenc
y
domain
p
ers
p
ectivesWeverif
y
the
p
ro
p
osedmethod
onthetimeseriesdatasetsofUCRandMITBIH.Ex
p
erimentalresultsonthedatasetsofUCRand
MITBIHshowthat
,
com
p
aredwiththestateofthearts
,
the
p
ro
p
osed methodim
p
rovestheAUC
andAP metricsofanomal
y
detection
p
erformanceb
y
and􀆰res
p
ectivel
y
Ke
y
words timeseries
;
unsu
p
ervisedanomal
y
detection
;
featuredistribution
;
adversariallearnin
g
;
multimodal
 
 
,
,
,
,
,
,
,
,
,
,
,
,
,
,
UCR
MITBIH
,
,
AUC
AP
,
 
;
;
;
;
 TP
  
(
timeseries
)
,
,
[
]
广
[
]
,
[
]
[
]
[
]
[
]
,
,
[
]
,
,
,
,
使
,
[
]
,
(
g
enerative
adversarialnetwork
,
GAN
)
[
]
GAN
,
,
[
]
,
[
]
[
]
,
Zhou
[
]
GAN
,
,
,
,
Li
[
]
GAN
,
(
lon
g
shortterm memor
y
,
LSTM
)
[
]
,
使
GAN
,
Gei
g
er
[
]
GAN
LSTM
,
,
,
使
GAN
,
,
,
Fi
g
 Com
p
arisonofsin
g
lemodalandmultimodal
detectionmodels
 
,
,
,
,
,
(
multimodalGAN
,
MMGAN
),
,
,
MMGAN
,
,
,
MMGAN
,
,
,
,
,
 
,
(
)
of 13
免费下载
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文档的来源(墨天轮),文档链接,文档作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论

关注
最新上传
暂无内容,敬请期待...
下载排行榜
Top250 周榜 月榜