暂无图片
暂无图片
暂无图片
暂无图片
暂无图片
05-An Autonomous Materialized View Management System with Deep Reinforcement Learning.pdf
412
6页
4次
2022-03-02
免费下载
An Autonomous Materialized View Management
System with Deep Reinforcement Learning
Yue Han, Guoliang Li, Haitao Yuan, Ji Sun
Department of Computer Science, Tsinghua University, Beijing, China
{han-y19@mails.,liguoliang@,yht16@mails.,sun-j16@mails.}tsinghua.edu.cn
Abstract—Materialized views (MVs) can signicantly opti-
mize the query processing in databases. However, it is hard
to generate MVs for ordinary users because it relies on
background knowledge, and existing methods rely on DBAs
to generate and maintain MVs. However, DBAs cannot handle
large-scale databases, especially cloud databases that have
millions of database instances and support millions of users.
us it calls for an autonomous MV management system.
In this paper, we propose an autonomous materialized view
management system, AutoView. It analyzes query workloads,
estimates the costs and benets of materializing queries as
views, and selects MVs to maximize the benet within a space
budget. We propose a deep reinforcement learning model to
select high-quality MVs, which enriches the state representa-
tion with query and MVs’ embe dding. Experimental results
show that our method outperforms existing studies in terms
of MV selection quality.
Index Terms—materialized views, database, deep learning,
deep reinforcement learning.
I. introduction
Materialized views (MVs) are very important in DBMS that
utilize views to improve the query performance based on
the space-for-time trade-o principle. Specically for online
analytical processing (OLAP), many queries share equivalent
sub-queries and there are many redundant computations
among these queries. MVs can alleviate this problem by
utilizing views to avoid such redundant computations.
However, it is hard to automatically generate MVs for
ordinary users [10], [13], [14], because it relies on background
knowledge. Existing methods rely on DBAs to generate and
maintain MVs. However, DBAs cannot handle large-scale
databases, especially cloud databases that have millions of
database instances and support millions of users. erefore,
it calls for an autonomous MVs management system, which,
given a query workload, selects potential queries (subqueries)
as views and uses the views to answer subsequent queries.
MV management systems have four main modules. (1)
MV candidate generation. It analyzes the query workload,
selects common sub-queries, and takes them as candidates
to generate MVs. (2) MV Cost/Benet estimation. It esti-
mates the cost and benet of materializing subqueries as
views, where the cost includes the space/time overhead and
the benet is the saved execution time using the view to
optimize queries. (3) MV selection. It selects high-quality
Guoliang Li is the corresponding author. is work was supported by
NSF of China (61632016,61925205,62041204), National Key R&D Program of
China (2020AAA0104500), Huawei, BNRist, and TAL education.
MV candidates to generate MVs based on the estimation
model, aiming to maximize the benet within a given cost
budget. (4) MV-aware query rewriting. Given a new query,
it selects appropriate views and rewrites the query based on
the selected views. ere are several challenges in these four
modules. First, MV selection relies on benet estimation of
using a view to optimize a query, and existing methods [1],
[12] do not consider the complicated eect of views on
queries and cannot capture the correlation between views
and queries. Second, traditional MV selection methods model
it as the knapsack problem and use greedy algorithms to
choose which MVs to materialize. However, the knapsack
problem relies highly on the estimation model and cannot
nd high-quality views. ird, MV rewriting also relies on
the estimation model, but existing models depend on the cost
model of optimizers and cannot eectively estimate the cost
and benet of using an MV to answer a query.
To address these challenges, we propose an end-to-end
autonomous MV management system, AutoView. It rst ana-
lyzes the query workloads, extracts common subqueries, and
selects the subqueries with high frequency as MV candidates.
en it estimates the benets of MV candidates and selects
the candidates with the highest benets as MVs. We use a
recurrent neural network (RNN) model, Encoder-Reducer,
to estimates queries and views and embed them as embedding
vectors. Next, to eectively select the MVs, we propose a re-
inforcement learning (RL) model, Encoder-Reducer Double
Deep Q-learning Network (ERDDQN), to select MVs. Finally,
for MV rewriting, we use the ERDDQN model to select MVs
to rewrite queries.
Contributions. We make the following contributions.
(1) We propose an autonomous materialized view manage-
ment system, AutoView, with deep reinforcement learning.
(2) We propose a reinforcement model to select MVs for ma-
terialization, and integrate the embedding vectors of queries
and MVs into the model.
(3) Our experimental results on real datasets showed that our
method signicantly outperformed existing solutions.
II. AutoView Overview
A. Problem Formulation
MV Selection. Given a set of SQL queries, Q = {q
i
}, we
aim to generate a set of views V = {v
j
}, such that (1) the
Execution time of different MV selection plans.
title AS t
movie_companies AS mc
company_type AS ct
info_type AS it
movie_info_idx AS mi_idx
movie_info AS mi
movie_keyword AS mk
Keyword AS k
info_type
id
info
movie_keyword
id
mv_id
kw_id
movie_info_idx
id
mv_id
if_tp_id
if
Title
id
title
pdn_year
movie_companies
id
mv_id
cpy_id
cpy_tp_id
company_name
id
name
cty_code
company_type
id
kind
keyword
id
kw
Query Origin With v
1
With v
2
With v
3
With v
1
,v
3
q
1
10.67ms 4.61ms 139.79ms 8.37ms 3.28ms
q
2
0.39ms 0.26ms 130.08ms
q
3
169.12ms 230.67ms 167.14ms
size 111MB 103MB 43MB 154MB
<latexit sha1_base64="gbKLhFc+t7KEYWuRTKIpPsEuuBc=">AAAEgXicjVHbbtNAEJ24BtpwS+GRl1UTEEjVymsHJxEvVXnpS0UDTVOpriLb2Sar+oYvlULIl/EhiD+Av2B24yYOFYK1kj1z5pzZnR0vCUSWG8aPmral37v/YHun/vDR4ydPG7vPzrK4SH0+8OMgTs89N+OBiPggF3nAz5OUu6EX8KF3/V7mhzc8zUQcneazhF+G7iQSV8J3c6RGu7VvjscnIprnLloW9XVUBG66mH/1K9+COFN5UH2nX/B0Rl6RD6lAOYKhyKekdTNirUpgVgOrGrB9IhnHWVVsfV56mUHtTpghalObKcCsHu30FOxSa5m0qNlFsFlAnWdQa6k1qGmXfoMaXQVbTi5CnrUqcLOEuiWze5SZfxpMa3U1Zncoa28I1mUIycQXvulljB0fqu4stbeXG3vbPj5cOx0ejVdPX3cC1+PB/FQO5hMPuC8ntliJcFqjRhM7U4vcBawETSjXSdz4Dg6MIQYfCgiBQwQ54gBcyPC7AAYGJMhdwhy5FJFQeQ4LqKO3QBVHhYvsNf5PMLoo2QhjWTNTbh9PCfCXopPAS/TEqEsRy9OIyheqsmT/Vnuuasq7zXD3ylohsjlMkf2X71b5vz7ZSw5X0FU9COwpUYzszi+rFOpV5M1JpascKyTISTzGfIrYV87bdybKk6ne5du6Kv9TKSUrY7/UFvBL3lINuCeXvRrnXXBmUmZRq282D/bLUW/DC9iD1zjPDhzAEZzAAHxtTzvS+tpHfUt/oxu6uZRqtdLzHDaW/u438mUPFg==</latexit>
<latexit sha1_base64="PFsNAqRIwNX3k8ZxGOeeQvFhna4=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN4KbCvYBbZFJOq1j8zKZiLW48gfc6o+Jf6B/4Z0xFaWI3pDkzLn3nJk71w5dEUvLes0YU9Mzs3PZ+dzC4tLySn51rR4HSeTwmhO4QdS0Wcxd4fOaFNLlzTDizLNd3rAHxyrfuOFRLAL/XA5D3vFY3xc94TBJVL0di77HLvIFq2jpMCdBKQUFpFEN8i9oo4sADhJ44PAhCbtgiOlpoQQLIXEdjIiLCAmd57hHjrQJVXGqYMQO6NunVStlfVorz1irHdrFpTcipYkt0gRUFxFWu5k6n2hnxf7mPdKe6mxD+tupl0esxCWxf+nGlf/VqV4kejjQPQjqKdSM6s5JXRJ9K+rk5reuJDmExCncpXxE2NHK8T2bWhPr3tXdMp1/05WKVWsnrU3wrk6pB3yoYu9rnJOgvlMslYvls91C5SgddRYb2MQ2zXMfFZygihp5X+ERT3g2To1r49a4+yw1MqlmHT/CePgA7PGR2w==</latexit>
<latexit sha1_base64="PFsNAqRIwNX3k8ZxGOeeQvFhna4=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN4KbCvYBbZFJOq1j8zKZiLW48gfc6o+Jf6B/4Z0xFaWI3pDkzLn3nJk71w5dEUvLes0YU9Mzs3PZ+dzC4tLySn51rR4HSeTwmhO4QdS0Wcxd4fOaFNLlzTDizLNd3rAHxyrfuOFRLAL/XA5D3vFY3xc94TBJVL0di77HLvIFq2jpMCdBKQUFpFEN8i9oo4sADhJ44PAhCbtgiOlpoQQLIXEdjIiLCAmd57hHjrQJVXGqYMQO6NunVStlfVorz1irHdrFpTcipYkt0gRUFxFWu5k6n2hnxf7mPdKe6mxD+tupl0esxCWxf+nGlf/VqV4kejjQPQjqKdSM6s5JXRJ9K+rk5reuJDmExCncpXxE2NHK8T2bWhPr3tXdMp1/05WKVWsnrU3wrk6pB3yoYu9rnJOgvlMslYvls91C5SgddRYb2MQ2zXMfFZygihp5X+ERT3g2To1r49a4+yw1MqlmHT/CePgA7PGR2w==</latexit>
kind = 'pdc'
info = 'top 250'
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
t.title
q
1
<latexit sha1_base64="6T3Vcx4agBY9LC6RwABkVTJZip8=">AAACxnicjVHLTsJAFD3UF+ILdemmkZi4Iq0YHzuiG5YYRUiQkLYM2NCX06mGEBN/wK1+mvEP9C+8Mw5GQ4zepu2Zc+85M3eumwR+KizrNWfMzM7NL+QXC0vLK6trxfWNyzTOuMcaXhzEvOU6KQv8iDWELwLWSjhzQjdgTXd4KvPNW8ZTP44uxChhndAZRH7f9xxB1PlN1+4WS1bZUmFOA1uDEnTU4+ILrtBDDA8ZQjBEEIQDOEjpacOGhYS4DsbEcUK+yjPco0DajKoYVTjEDuk7oFVbsxGtpWeq1B7tEtDLSWlihzQx1XHCcjdT5TPlLNnfvMfKU55tRH9Xe4XEClwT+5duUvlfnexFoI8j1YNPPSWKkd152iVTtyJPbn7rSpBDQpzEPcpzwp5STu7ZVJpU9S7v1lH5N1UpWbn2dG2Gd3lKNeBjGQdf45wGl3tlu1KunO2Xqid61HlsYRu7NM9DVFFDHQ3yHuART3g2akZkZMbdZ6mR05pN/Ajj4QMWJZBR</latexit>
<latexit sha1_base64="PFsNAqRIwNX3k8ZxGOeeQvFhna4=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN4KbCvYBbZFJOq1j8zKZiLW48gfc6o+Jf6B/4Z0xFaWI3pDkzLn3nJk71w5dEUvLes0YU9Mzs3PZ+dzC4tLySn51rR4HSeTwmhO4QdS0Wcxd4fOaFNLlzTDizLNd3rAHxyrfuOFRLAL/XA5D3vFY3xc94TBJVL0di77HLvIFq2jpMCdBKQUFpFEN8i9oo4sADhJ44PAhCbtgiOlpoQQLIXEdjIiLCAmd57hHjrQJVXGqYMQO6NunVStlfVorz1irHdrFpTcipYkt0gRUFxFWu5k6n2hnxf7mPdKe6mxD+tupl0esxCWxf+nGlf/VqV4kejjQPQjqKdSM6s5JXRJ9K+rk5reuJDmExCncpXxE2NHK8T2bWhPr3tXdMp1/05WKVWsnrU3wrk6pB3yoYu9rnJOgvlMslYvls91C5SgddRYb2MQ2zXMfFZygihp5X+ERT3g2To1r49a4+yw1MqlmHT/CePgA7PGR2w==</latexit>
<latexit sha1_base64="PFsNAqRIwNX3k8ZxGOeeQvFhna4=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN4KbCvYBbZFJOq1j8zKZiLW48gfc6o+Jf6B/4Z0xFaWI3pDkzLn3nJk71w5dEUvLes0YU9Mzs3PZ+dzC4tLySn51rR4HSeTwmhO4QdS0Wcxd4fOaFNLlzTDizLNd3rAHxyrfuOFRLAL/XA5D3vFY3xc94TBJVL0di77HLvIFq2jpMCdBKQUFpFEN8i9oo4sADhJ44PAhCbtgiOlpoQQLIXEdjIiLCAmd57hHjrQJVXGqYMQO6NunVStlfVorz1irHdrFpTcipYkt0gRUFxFWu5k6n2hnxf7mPdKe6mxD+tupl0esxCWxf+nGlf/VqV4kejjQPQjqKdSM6s5JXRJ9K+rk5reuJDmExCncpXxE2NHK8T2bWhPr3tXdMp1/05WKVWsnrU3wrk6pB3yoYu9rnJOgvlMslYvls91C5SgddRYb2MQ2zXMfFZygihp5X+ERT3g2To1r49a4+yw1MqlmHT/CePgA7PGR2w==</latexit>
kind = 'pdc'
info = 'bottom 10'
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
<latexit sha1_base64="PFsNAqRIwNX3k8ZxGOeeQvFhna4=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN4KbCvYBbZFJOq1j8zKZiLW48gfc6o+Jf6B/4Z0xFaWI3pDkzLn3nJk71w5dEUvLes0YU9Mzs3PZ+dzC4tLySn51rR4HSeTwmhO4QdS0Wcxd4fOaFNLlzTDizLNd3rAHxyrfuOFRLAL/XA5D3vFY3xc94TBJVL0di77HLvIFq2jpMCdBKQUFpFEN8i9oo4sADhJ44PAhCbtgiOlpoQQLIXEdjIiLCAmd57hHjrQJVXGqYMQO6NunVStlfVorz1irHdrFpTcipYkt0gRUFxFWu5k6n2hnxf7mPdKe6mxD+tupl0esxCWxf+nGlf/VqV4kejjQPQjqKdSM6s5JXRJ9K+rk5reuJDmExCncpXxE2NHK8T2bWhPr3tXdMp1/05WKVWsnrU3wrk6pB3yoYu9rnJOgvlMslYvls91C5SgddRYb2MQ2zXMfFZygihp5X+ERT3g2To1r49a4+yw1MqlmHT/CePgA7PGR2w==</latexit>
<latexit sha1_base64="PFsNAqRIwNX3k8ZxGOeeQvFhna4=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN4KbCvYBbZFJOq1j8zKZiLW48gfc6o+Jf6B/4Z0xFaWI3pDkzLn3nJk71w5dEUvLes0YU9Mzs3PZ+dzC4tLySn51rR4HSeTwmhO4QdS0Wcxd4fOaFNLlzTDizLNd3rAHxyrfuOFRLAL/XA5D3vFY3xc94TBJVL0di77HLvIFq2jpMCdBKQUFpFEN8i9oo4sADhJ44PAhCbtgiOlpoQQLIXEdjIiLCAmd57hHjrQJVXGqYMQO6NunVStlfVorz1irHdrFpTcipYkt0gRUFxFWu5k6n2hnxf7mPdKe6mxD+tupl0esxCWxf+nGlf/VqV4kejjQPQjqKdSM6s5JXRJ9K+rk5reuJDmExCncpXxE2NHK8T2bWhPr3tXdMp1/05WKVWsnrU3wrk6pB3yoYu9rnJOgvlMslYvls91C5SgddRYb2MQ2zXMfFZygihp5X+ERT3g2To1r49a4+yw1MqlmHT/CePgA7PGR2w==</latexit>
info = 'top 250'
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
pdn_year
BETWEEN 2005 AND 2010
<latexit sha1_base64="PFsNAqRIwNX3k8ZxGOeeQvFhna4=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN4KbCvYBbZFJOq1j8zKZiLW48gfc6o+Jf6B/4Z0xFaWI3pDkzLn3nJk71w5dEUvLes0YU9Mzs3PZ+dzC4tLySn51rR4HSeTwmhO4QdS0Wcxd4fOaFNLlzTDizLNd3rAHxyrfuOFRLAL/XA5D3vFY3xc94TBJVL0di77HLvIFq2jpMCdBKQUFpFEN8i9oo4sADhJ44PAhCbtgiOlpoQQLIXEdjIiLCAmd57hHjrQJVXGqYMQO6NunVStlfVorz1irHdrFpTcipYkt0gRUFxFWu5k6n2hnxf7mPdKe6mxD+tupl0esxCWxf+nGlf/VqV4kejjQPQjqKdSM6s5JXRJ9K+rk5reuJDmExCncpXxE2NHK8T2bWhPr3tXdMp1/05WKVWsnrU3wrk6pB3yoYu9rnJOgvlMslYvls91C5SgddRYb2MQ2zXMfFZygihp5X+ERT3g2To1r49a4+yw1MqlmHT/CePgA7PGR2w==</latexit>
pdn_year > 2005
<latexit sha1_base64="PFsNAqRIwNX3k8ZxGOeeQvFhna4=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN4KbCvYBbZFJOq1j8zKZiLW48gfc6o+Jf6B/4Z0xFaWI3pDkzLn3nJk71w5dEUvLes0YU9Mzs3PZ+dzC4tLySn51rR4HSeTwmhO4QdS0Wcxd4fOaFNLlzTDizLNd3rAHxyrfuOFRLAL/XA5D3vFY3xc94TBJVL0di77HLvIFq2jpMCdBKQUFpFEN8i9oo4sADhJ44PAhCbtgiOlpoQQLIXEdjIiLCAmd57hHjrQJVXGqYMQO6NunVStlfVorz1irHdrFpTcipYkt0gRUFxFWu5k6n2hnxf7mPdKe6mxD+tupl0esxCWxf+nGlf/VqV4kejjQPQjqKdSM6s5JXRJ9K+rk5reuJDmExCncpXxE2NHK8T2bWhPr3tXdMp1/05WKVWsnrU3wrk6pB3yoYu9rnJOgvlMslYvls91C5SgddRYb2MQ2zXMfFZygihp5X+ERT3g2To1r49a4+yw1MqlmHT/CePgA7PGR2w==</latexit>
q
2
<latexit sha1_base64="yDcY7ZlUDao/dpj7K4O3umAJO90=">AAACxnicjVHLTsJAFD3UF+ILdemmkZi4IgWMjx3RDUuM8kiQkHYYsKEv26mGEBN/wK1+mvEP9C+8Mw5GQ4zepu2Zc+85M3euE3luIizrNWPMzS8sLmWXcyura+sb+c2tZhKmMeMNFnph3HbshHtuwBvCFR5vRzG3fcfjLWd0JvOtWx4nbhhcinHEu749DNyBy2xB1MVNr9zLF6yipcKcBSUNCtBRD/MvuEIfIRhS+OAIIAh7sJHQ00EJFiLiupgQFxNyVZ7jHjnSplTFqcImdkTfIa06mg1oLT0TpWa0i0dvTEoTe6QJqS4mLHczVT5VzpL9zXuiPOXZxvR3tJdPrMA1sX/pppX/1cleBAY4Vj241FOkGNkd0y6puhV5cvNbV4IcIuIk7lM+JsyUcnrPptIkqnd5t7bKv6lKyco107Up3uUp1YBPZBx+jXMWNMvFUqVYOT8oVE/1qLPYwS72aZ5HqKKGOhrkPcQjnvBs1IzASI27z1IjozXb+BHGwwcYhZBS</latexit>
q
3
<latexit sha1_base64="N42nT7EwdYemrN2RLzCfA0MHIJ0=">AAACxnicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RDUuMIiRISFsGnFDaOp1qCDHxB9zqpxn/QP/CO+NgNMTobdqeOfeeM3PnenHAE+k4rxlrZnZufiG7mFtaXlldy69vXCZRKnxW96MgEk3PTVjAQ1aXXAasGQvmDr2ANbzBqco3bplIeBReyFHM2kO3H/Ie911J1PlNp9zJF5yio8OeBiUDCjBRi/IvuEIXEXykGIIhhCQcwEVCTwslOIiJa2NMnCDEdZ7hHjnSplTFqMIldkDfPq1ahg1prTwTrfZpl4BeQUobO6SJqE4QVrvZOp9qZ8X+5j3WnupsI/p7xmtIrMQ1sX/pJpX/1aleJHo40j1w6inWjOrONy6pvhV1cvtbV5IcYuIU7lJeEPa1cnLPttYkund1t67Ov+lKxaq1b2pTvKtT6gEfqzj4Guc0uNwrlsrF8tl+oXJiRp3FFraxS/M8RAVV1FAn7z4e8YRnq2qFVmrdfZZaGaPZxI+wHj4AGuWQUw==</latexit>
v
1
<latexit sha1_base64="DjrU99leJSCqGBlQwOpE/B9dECA=">AAACxnicjVHLSsNAFD3GV62vqks3wSK4KokVH7uimy4r2gfUUpJ0WkPzYjKplCL4A27108Q/0L/wzjgVpYjekOTMufecmTvXTQI/FZb1OmfMLywuLedW8qtr6xubha3tRhpn3GN1Lw5i3nKdlAV+xOrCFwFrJZw5oRuwpju8kPnmiPHUj6NrMU5YJ3QGkd/3PUcQdTXq2t1C0SpZKsxZYGtQhI5aXHjBDXqI4SFDCIYIgnAAByk9bdiwkBDXwYQ4TshXeYZ75EmbURWjCofYIX0HtGprNqK19EyV2qNdAno5KU3skyamOk5Y7maqfKacJfub90R5yrON6e9qr5BYgVti/9JNK/+rk70I9HGqevCpp0QxsjtPu2TqVuTJzW9dCXJIiJO4R3lO2FPK6T2bSpOq3uXdOir/piolK9eers3wLk+pBnwm4/hrnLOgcViyy6Xy5VGxcq5HncMu9nBA8zxBBVXUUCfvAR7xhGejakRGZtx9lhpzWrODH2E8fAAiD5BW</latexit>
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
v
2
<latexit sha1_base64="Y3JEJiEqCrQVAgpwMPcQuGaLXng=">AAACxnicjVHLTsJAFD3UF+ILdemmkZi4IgWMjx3RDUuM8kiQkLYMOKGvTKcYQkz8Abf6acY/0L/wzliMhhi9Tdsz595zZu5cJ/J4LC3rNWMsLC4tr2RXc2vrG5tb+e2dZhwmwmUNN/RC0XbsmHk8YA3JpcfakWC273is5YwuVL41ZiLmYXAtJxHr+vYw4APu2pKoq3Gv3MsXrKKlw5wHpRQUkEY9zL/gBn2EcJHAB0MASdiDjZieDkqwEBHXxZQ4QYjrPMM9cqRNqIpRhU3siL5DWnVSNqC18oy12qVdPHoFKU0ckCakOkFY7WbqfKKdFfub91R7qrNN6O+kXj6xErfE/qWbVf5Xp3qRGOBU98Cpp0gzqjs3dUn0raiTm9+6kuQQEadwn/KCsKuVs3s2tSbWvau7tXX+TVcqVq3dtDbBuzqlHvCZiuOvcc6DZrlYqhQrl0eF6nk66iz2sI9DmucJqqihjgZ5D/GIJzwbNSMwEuPus9TIpJpd/Ajj4QMkb5BX</latexit>
v
3
<latexit sha1_base64="kL8p6D2R5s32dNX/lvuTvfOqNOg=">AAACxnicjVHLSsNAFD3GV62vqks3wSK4KqkVH7uimy4r2gfUUpLptIamSZhMKqUI/oBb/TTxD/QvvDNORSmiNyQ5c+49Z+bO9eLAT6TjvM5Z8wuLS8uZlezq2vrGZm5ru55EqWC8xqIgEk3PTXjgh7wmfRnwZiy4O/QC3vAGFyrfGHGR+FF4Lccxbw/dfuj3fOZKoq5GnVInl3cKjg57FhQNyMNENcq94AZdRGBIMQRHCEk4gIuEnhaKcBAT18aEOEHI13mOe2RJm1IVpwqX2AF9+7RqGTaktfJMtJrRLgG9gpQ29kkTUZ0grHazdT7Vzor9zXuiPdXZxvT3jNeQWIlbYv/STSv/q1O9SPRwqnvwqadYM6o7ZlxSfSvq5Pa3riQ5xMQp3KW8IMy0cnrPttYkund1t67Ov+lKxao1M7Up3tUp9YDPVBx/jXMW1A8LxVKhdHmUL5+bUWewiz0c0DxPUEYFVdTIu49HPOHZqlihlVp3n6XWnNHs4EdYDx8mz5BY</latexit>
<latexit sha1_base64="9GxX6Svwpwr2IIOPV2IoMm+yK0I=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN11WtA9oiyTTaR2aJmEyUUoR/AG3+mniH+hfeGdMRSmiNyQ5c+49Z+bO9SJfxMpxXjPW3PzC4lJ2Obeyura+kd/casRhIhmvs9APZctzY+6LgNeVUD5vRZK7I8/nTW94rvPNWy5jEQZXahzx7sgdBKIvmKuIuuxE4jpfcIqOCXsWlFJQQBq1MP+CDnoIwZBgBI4AirAPFzE9bZTgICKuiwlxkpAweY575EibUBWnCpfYIX0HtGqnbEBr7RkbNaNdfHolKW3skSakOklY72abfGKcNfub98R46rON6e+lXiNiFW6I/Us3rfyvTvei0MeJ6UFQT5FhdHcsdUnMreiT29+6UuQQEadxj/KSMDPK6T3bRhOb3vXduib/Zio1q9csrU3wrk9pBnyq4+hrnLOgcVAslYvli8NC5SwddRY72MU+zfMYFVRRQ528B3jEE56tqhVYiXX3WWplUs02foT18AGRjJCF</latexit>
mv_id,
cpy_id
<latexit sha1_base64="9GxX6Svwpwr2IIOPV2IoMm+yK0I=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN11WtA9oiyTTaR2aJmEyUUoR/AG3+mniH+hfeGdMRSmiNyQ5c+49Z+bO9SJfxMpxXjPW3PzC4lJ2Obeyura+kd/casRhIhmvs9APZctzY+6LgNeVUD5vRZK7I8/nTW94rvPNWy5jEQZXahzx7sgdBKIvmKuIuuxE4jpfcIqOCXsWlFJQQBq1MP+CDnoIwZBgBI4AirAPFzE9bZTgICKuiwlxkpAweY575EibUBWnCpfYIX0HtGqnbEBr7RkbNaNdfHolKW3skSakOklY72abfGKcNfub98R46rON6e+lXiNiFW6I/Us3rfyvTvei0MeJ6UFQT5FhdHcsdUnMreiT29+6UuQQEadxj/KSMDPK6T3bRhOb3vXduib/Zio1q9csrU3wrk9pBnyq4+hrnLOgcVAslYvli8NC5SwddRY72MU+zfMYFVRRQ528B3jEE56tqhVYiXX3WWplUs02foT18AGRjJCF</latexit>
info,
mv_id,
minfo
<latexit sha1_base64="9GxX6Svwpwr2IIOPV2IoMm+yK0I=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN11WtA9oiyTTaR2aJmEyUUoR/AG3+mniH+hfeGdMRSmiNyQ5c+49Z+bO9SJfxMpxXjPW3PzC4lJ2Obeyura+kd/casRhIhmvs9APZctzY+6LgNeVUD5vRZK7I8/nTW94rvPNWy5jEQZXahzx7sgdBKIvmKuIuuxE4jpfcIqOCXsWlFJQQBq1MP+CDnoIwZBgBI4AirAPFzE9bZTgICKuiwlxkpAweY575EibUBWnCpfYIX0HtGqnbEBr7RkbNaNdfHolKW3skSakOklY72abfGKcNfub98R46rON6e+lXiNiFW6I/Us3rfyvTvei0MeJ6UFQT5FhdHcsdUnMreiT29+6UuQQEadxj/KSMDPK6T3bRhOb3vXduib/Zio1q9csrU3wrk9pBnyq4+hrnLOgcVAslYvli8NC5SwddRY72MU+zfMYFVRRQ528B3jEE56tqhVYiXX3WWplUs02foT18AGRjJCF</latexit>
info,
mv_id,
minfo
<latexit sha1_base64="9GxX6Svwpwr2IIOPV2IoMm+yK0I=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN11WtA9oiyTTaR2aJmEyUUoR/AG3+mniH+hfeGdMRSmiNyQ5c+49Z+bO9SJfxMpxXjPW3PzC4lJ2Obeyura+kd/casRhIhmvs9APZctzY+6LgNeVUD5vRZK7I8/nTW94rvPNWy5jEQZXahzx7sgdBKIvmKuIuuxE4jpfcIqOCXsWlFJQQBq1MP+CDnoIwZBgBI4AirAPFzE9bZTgICKuiwlxkpAweY575EibUBWnCpfYIX0HtGqnbEBr7RkbNaNdfHolKW3skSakOklY72abfGKcNfub98R46rON6e+lXiNiFW6I/Us3rfyvTvei0MeJ6UFQT5FhdHcsdUnMreiT29+6UuQQEadxj/KSMDPK6T3bRhOb3vXduib/Zio1q9csrU3wrk9pBnyq4+hrnLOgcVAslYvli8NC5SwddRY72MU+zfMYFVRRQ528B3jEE56tqhVYiXX3WWplUs02foT18AGRjJCF</latexit>
t.title
<latexit sha1_base64="9GxX6Svwpwr2IIOPV2IoMm+yK0I=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN11WtA9oiyTTaR2aJmEyUUoR/AG3+mniH+hfeGdMRSmiNyQ5c+49Z+bO9SJfxMpxXjPW3PzC4lJ2Obeyura+kd/casRhIhmvs9APZctzY+6LgNeVUD5vRZK7I8/nTW94rvPNWy5jEQZXahzx7sgdBKIvmKuIuuxE4jpfcIqOCXsWlFJQQBq1MP+CDnoIwZBgBI4AirAPFzE9bZTgICKuiwlxkpAweY575EibUBWnCpfYIX0HtGqnbEBr7RkbNaNdfHolKW3skSakOklY72abfGKcNfub98R46rON6e+lXiNiFW6I/Us3rfyvTvei0MeJ6UFQT5FhdHcsdUnMreiT29+6UuQQEadxj/KSMDPK6T3bRhOb3vXduib/Zio1q9csrU3wrk9pBnyq4+hrnLOgcVAslYvli8NC5SwddRY72MU+zfMYFVRRQ528B3jEE56tqhVYiXX3WWplUs02foT18AGRjJCF</latexit>
t.title
<latexit sha1_base64="9GxX6Svwpwr2IIOPV2IoMm+yK0I=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN11WtA9oiyTTaR2aJmEyUUoR/AG3+mniH+hfeGdMRSmiNyQ5c+49Z+bO9SJfxMpxXjPW3PzC4lJ2Obeyura+kd/casRhIhmvs9APZctzY+6LgNeVUD5vRZK7I8/nTW94rvPNWy5jEQZXahzx7sgdBKIvmKuIuuxE4jpfcIqOCXsWlFJQQBq1MP+CDnoIwZBgBI4AirAPFzE9bZTgICKuiwlxkpAweY575EibUBWnCpfYIX0HtGqnbEBr7RkbNaNdfHolKW3skSakOklY72abfGKcNfub98R46rON6e+lXiNiFW6I/Us3rfyvTvei0MeJ6UFQT5FhdHcsdUnMreiT29+6UuQQEadxj/KSMDPK6T3bRhOb3vXduib/Zio1q9csrU3wrk9pBnyq4+hrnLOgcVAslYvli8NC5SwddRY72MU+zfMYFVRRQ528B3jEE56tqhVYiXX3WWplUs02foT18AGRjJCF</latexit>
info
LIKE '%sequel%'
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
ct
t mc
it
mi_idx
ct
t mc
it
mi_idx t
it
mi_idx k mk
<latexit sha1_base64="PFsNAqRIwNX3k8ZxGOeeQvFhna4=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN4KbCvYBbZFJOq1j8zKZiLW48gfc6o+Jf6B/4Z0xFaWI3pDkzLn3nJk71w5dEUvLes0YU9Mzs3PZ+dzC4tLySn51rR4HSeTwmhO4QdS0Wcxd4fOaFNLlzTDizLNd3rAHxyrfuOFRLAL/XA5D3vFY3xc94TBJVL0di77HLvIFq2jpMCdBKQUFpFEN8i9oo4sADhJ44PAhCbtgiOlpoQQLIXEdjIiLCAmd57hHjrQJVXGqYMQO6NunVStlfVorz1irHdrFpTcipYkt0gRUFxFWu5k6n2hnxf7mPdKe6mxD+tupl0esxCWxf+nGlf/VqV4kejjQPQjqKdSM6s5JXRJ9K+rk5reuJDmExCncpXxE2NHK8T2bWhPr3tXdMp1/05WKVWsnrU3wrk6pB3yoYu9rnJOgvlMslYvls91C5SgddRYb2MQ2zXMfFZygihp5X+ERT3g2To1r49a4+yw1MqlmHT/CePgA7PGR2w==</latexit>
kind = 'pdc’
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
ct
mc
it
mi_idx
<latexit sha1_base64="PFsNAqRIwNX3k8ZxGOeeQvFhna4=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN4KbCvYBbZFJOq1j8zKZiLW48gfc6o+Jf6B/4Z0xFaWI3pDkzLn3nJk71w5dEUvLes0YU9Mzs3PZ+dzC4tLySn51rR4HSeTwmhO4QdS0Wcxd4fOaFNLlzTDizLNd3rAHxyrfuOFRLAL/XA5D3vFY3xc94TBJVL0di77HLvIFq2jpMCdBKQUFpFEN8i9oo4sADhJ44PAhCbtgiOlpoQQLIXEdjIiLCAmd57hHjrQJVXGqYMQO6NunVStlfVorz1irHdrFpTcipYkt0gRUFxFWu5k6n2hnxf7mPdKe6mxD+tupl0esxCWxf+nGlf/VqV4kejjQPQjqKdSM6s5JXRJ9K+rk5reuJDmExCncpXxE2NHK8T2bWhPr3tXdMp1/05WKVWsnrU3wrk6pB3yoYu9rnJOgvlMslYvls91C5SgddRYb2MQ2zXMfFZygihp5X+ERT3g2To1r49a4+yw1MqlmHT/CePgA7PGR2w==</latexit>
info = 'top 250'
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
it
mi_idx
Queries
Views
Database Schema
Fig. 1. MV selection example.
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
v
1
<latexit sha1_base64="DjrU99leJSCqGBlQwOpE/B9dECA=">AAACxnicjVHLSsNAFD3GV62vqks3wSK4KokVH7uimy4r2gfUUpJ0WkPzYjKplCL4A27108Q/0L/wzjgVpYjekOTMufecmTvXTQI/FZb1OmfMLywuLedW8qtr6xubha3tRhpn3GN1Lw5i3nKdlAV+xOrCFwFrJZw5oRuwpju8kPnmiPHUj6NrMU5YJ3QGkd/3PUcQdTXq2t1C0SpZKsxZYGtQhI5aXHjBDXqI4SFDCIYIgnAAByk9bdiwkBDXwYQ4TshXeYZ75EmbURWjCofYIX0HtGprNqK19EyV2qNdAno5KU3skyamOk5Y7maqfKacJfub90R5yrON6e9qr5BYgVti/9JNK/+rk70I9HGqevCpp0QxsjtPu2TqVuTJzW9dCXJIiJO4R3lO2FPK6T2bSpOq3uXdOir/piolK9eers3wLk+pBnwm4/hrnLOgcViyy6Xy5VGxcq5HncMu9nBA8zxBBVXUUCfvAR7xhGejakRGZtx9lhpzWrODH2E8fAAiD5BW</latexit>
t
<latexit sha1_base64="9GxX6Svwpwr2IIOPV2IoMm+yK0I=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN11WtA9oiyTTaR2aJmEyUUoR/AG3+mniH+hfeGdMRSmiNyQ5c+49Z+bO9SJfxMpxXjPW3PzC4lJ2Obeyura+kd/casRhIhmvs9APZctzY+6LgNeVUD5vRZK7I8/nTW94rvPNWy5jEQZXahzx7sgdBKIvmKuIuuxE4jpfcIqOCXsWlFJQQBq1MP+CDnoIwZBgBI4AirAPFzE9bZTgICKuiwlxkpAweY575EibUBWnCpfYIX0HtGqnbEBr7RkbNaNdfHolKW3skSakOklY72abfGKcNfub98R46rON6e+lXiNiFW6I/Us3rfyvTvei0MeJ6UFQT5FhdHcsdUnMreiT29+6UuQQEadxj/KSMDPK6T3bRhOb3vXduib/Zio1q9csrU3wrk9pBnyq4+hrnLOgcVAslYvli8NC5SwddRY72MU+zfMYFVRRQ528B3jEE56tqhVYiXX3WWplUs02foT18AGRjJCF</latexit>
t.title
<latexit sha1_base64="PFsNAqRIwNX3k8ZxGOeeQvFhna4=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN4KbCvYBbZFJOq1j8zKZiLW48gfc6o+Jf6B/4Z0xFaWI3pDkzLn3nJk71w5dEUvLes0YU9Mzs3PZ+dzC4tLySn51rR4HSeTwmhO4QdS0Wcxd4fOaFNLlzTDizLNd3rAHxyrfuOFRLAL/XA5D3vFY3xc94TBJVL0di77HLvIFq2jpMCdBKQUFpFEN8i9oo4sADhJ44PAhCbtgiOlpoQQLIXEdjIiLCAmd57hHjrQJVXGqYMQO6NunVStlfVorz1irHdrFpTcipYkt0gRUFxFWu5k6n2hnxf7mPdKe6mxD+tupl0esxCWxf+nGlf/VqV4kejjQPQjqKdSM6s5JXRJ9K+rk5reuJDmExCncpXxE2NHK8T2bWhPr3tXdMp1/05WKVWsnrU3wrk6pB3yoYu9rnJOgvlMslYvls91C5SgddRYb2MQ2zXMfFZygihp5X+ERT3g2To1r49a4+yw1MqlmHT/CePgA7PGR2w==</latexit>
kind = 'pdc’
<latexit sha1_base64="PFsNAqRIwNX3k8ZxGOeeQvFhna4=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN4KbCvYBbZFJOq1j8zKZiLW48gfc6o+Jf6B/4Z0xFaWI3pDkzLn3nJk71w5dEUvLes0YU9Mzs3PZ+dzC4tLySn51rR4HSeTwmhO4QdS0Wcxd4fOaFNLlzTDizLNd3rAHxyrfuOFRLAL/XA5D3vFY3xc94TBJVL0di77HLvIFq2jpMCdBKQUFpFEN8i9oo4sADhJ44PAhCbtgiOlpoQQLIXEdjIiLCAmd57hHjrQJVXGqYMQO6NunVStlfVorz1irHdrFpTcipYkt0gRUFxFWu5k6n2hnxf7mPdKe6mxD+tupl0esxCWxf+nGlf/VqV4kejjQPQjqKdSM6s5JXRJ9K+rk5reuJDmExCncpXxE2NHK8T2bWhPr3tXdMp1/05WKVWsnrU3wrk6pB3yoYu9rnJOgvlMslYvls91C5SgddRYb2MQ2zXMfFZygihp5X+ERT3g2To1r49a4+yw1MqlmHT/CePgA7PGR2w==</latexit>
<latexit sha1_base64="PFsNAqRIwNX3k8ZxGOeeQvFhna4=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN4KbCvYBbZFJOq1j8zKZiLW48gfc6o+Jf6B/4Z0xFaWI3pDkzLn3nJk71w5dEUvLes0YU9Mzs3PZ+dzC4tLySn51rR4HSeTwmhO4QdS0Wcxd4fOaFNLlzTDizLNd3rAHxyrfuOFRLAL/XA5D3vFY3xc94TBJVL0di77HLvIFq2jpMCdBKQUFpFEN8i9oo4sADhJ44PAhCbtgiOlpoQQLIXEdjIiLCAmd57hHjrQJVXGqYMQO6NunVStlfVorz1irHdrFpTcipYkt0gRUFxFWu5k6n2hnxf7mPdKe6mxD+tupl0esxCWxf+nGlf/VqV4kejjQPQjqKdSM6s5JXRJ9K+rk5reuJDmExCncpXxE2NHK8T2bWhPr3tXdMp1/05WKVWsnrU3wrk6pB3yoYu9rnJOgvlMslYvls91C5SgddRYb2MQ2zXMfFZygihp5X+ERT3g2To1r49a4+yw1MqlmHT/CePgA7PGR2w==</latexit>
kind = 'pdc'
info = 'top 250'
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
on
<latexit sha1_base64="f6fTwr9yxrLXD3QmJ9Pi3hsahEI=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IkWMjx3RjWGFiQUSIKYtA07oK9OphhA3/oBb/TLjH+hfeGcsRkOM3qbtmXPvOTN3rhv7PJGW9Zoz5uYXFpfyy4WV1bX1jeLmVjOJUuEx24v8SLRdJ2E+D5ktufRZOxbMCVyftdzRucq3bplIeBReyXHMeoEzDPmAe44kyu7WIx5eF0tW2dJhzoJKBkrIohEVX9BFHxE8pAjAEEIS9uEgoaeDCizExPUwIU4Q4jrPcI8CaVOqYlThEDui75BWnYwNaa08E632aBefXkFKE3ukiahOEFa7mTqfamfF/uY90Z7qbGP6u5lXQKzEDbF/6aaV/9WpXiQGONE9cOop1ozqzstcUn0r6uTmt64kOcTEKdynvCDsaeX0nk2tSXTv6m4dnX/TlYpVay+rTfGuTqkHfKri6Gucs6B5UK5Uy9XLw1LtLBt1HjvYxT7N8xg1XKABm7w5HvGEZ6NuxMadMf4sNXKZZhs/wnj4AJJBkVA=</latexit>
t.title
q
1
<latexit sha1_base64="6T3Vcx4agBY9LC6RwABkVTJZip8=">AAACxnicjVHLTsJAFD3UF+ILdemmkZi4Iq0YHzuiG5YYRUiQkLYM2NCX06mGEBN/wK1+mvEP9C+8Mw5GQ4zepu2Zc+85M3eumwR+KizrNWfMzM7NL+QXC0vLK6trxfWNyzTOuMcaXhzEvOU6KQv8iDWELwLWSjhzQjdgTXd4KvPNW8ZTP44uxChhndAZRH7f9xxB1PlN1+4WS1bZUmFOA1uDEnTU4+ILrtBDDA8ZQjBEEIQDOEjpacOGhYS4DsbEcUK+yjPco0DajKoYVTjEDuk7oFVbsxGtpWeq1B7tEtDLSWlihzQx1XHCcjdT5TPlLNnfvMfKU55tRH9Xe4XEClwT+5duUvlfnexFoI8j1YNPPSWKkd152iVTtyJPbn7rSpBDQpzEPcpzwp5STu7ZVJpU9S7v1lH5N1UpWbn2dG2Gd3lKNeBjGQdf45wGl3tlu1KunO2Xqid61HlsYRu7NM9DVFFDHQ3yHuART3g2akZkZMbdZ6mR05pN/Ajj4QMWJZBR</latexit>
<latexit sha1_base64="9GxX6Svwpwr2IIOPV2IoMm+yK0I=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN11WtA9oiyTTaR2aJmEyUUoR/AG3+mniH+hfeGdMRSmiNyQ5c+49Z+bO9SJfxMpxXjPW3PzC4lJ2Obeyura+kd/casRhIhmvs9APZctzY+6LgNeVUD5vRZK7I8/nTW94rvPNWy5jEQZXahzx7sgdBKIvmKuIuuxE4jpfcIqOCXsWlFJQQBq1MP+CDnoIwZBgBI4AirAPFzE9bZTgICKuiwlxkpAweY575EibUBWnCpfYIX0HtGqnbEBr7RkbNaNdfHolKW3skSakOklY72abfGKcNfub98R46rON6e+lXiNiFW6I/Us3rfyvTvei0MeJ6UFQT5FhdHcsdUnMreiT29+6UuQQEadxj/KSMDPK6T3bRhOb3vXduib/Zio1q9csrU3wrk9pBnyq4+hrnLOgcVAslYvli8NC5SwddRY72MU+zfMYFVRRQ528B3jEE56tqhVYiXX3WWplUs02foT18AGRjJCF</latexit>
ct
t
mc
it
mi_idx
<latexit sha1_base64="PFsNAqRIwNX3k8ZxGOeeQvFhna4=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrPnZFN4KbCvYBbZFJOq1j8zKZiLW48gfc6o+Jf6B/4Z0xFaWI3pDkzLn3nJk71w5dEUvLes0YU9Mzs3PZ+dzC4tLySn51rR4HSeTwmhO4QdS0Wcxd4fOaFNLlzTDizLNd3rAHxyrfuOFRLAL/XA5D3vFY3xc94TBJVL0di77HLvIFq2jpMCdBKQUFpFEN8i9oo4sADhJ44PAhCbtgiOlpoQQLIXEdjIiLCAmd57hHjrQJVXGqYMQO6NunVStlfVorz1irHdrFpTcipYkt0gRUFxFWu5k6n2hnxf7mPdKe6mxD+tupl0esxCWxf+nGlf/VqV4kejjQPQjqKdSM6s5JXRJ9K+rk5reuJDmExCncpXxE2NHK8T2bWhPr3tXdMp1/05WKVWsnrU3wrk6pB3yoYu9rnJOgvlMslYvls91C5SgddRYb2MQ2zXMfFZygihp5X+ERT3g2To1r49a4+yw1MqlmHT/CePgA7PGR2w==</latexit>
info = 'top 250'
q
{v
1
,v
3
}
1
<latexit sha1_base64="LdwopafjOkHfaSzQGXrFmdoQvAs=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgQkpixceu6MZlBfuQVkOSTmtomsRkUiyluBO3/oBb/SPxD/QvvDOmohTRG5KcOfeeM3PnWoHrRFzTXlPK1PTM7Fx6PrOwuLS8kl3NVSM/Dm1WsX3XD+uWGTHX8ViFO9xl9SBkZs9yWc3qHot8rc/CyPG9Mz4I2EXP7HhO27FNTpSRzV0b+uWwOewb+rbaN4rN0cjI5rWCJkOdBHoC8kii7Gdf0EQLPmzE6IHBAyfswkRETwM6NATEXWBIXEjIkXmGETKkjamKUYVJbJe+HVo1EtajtfCMpNqmXVx6Q1Kq2CSNT3UhYbGbKvOxdBbsb95D6SnONqC/lXj1iOW4IvYv3bjyvzrRC0cbB7IHh3oKJCO6sxOXWN6KOLn6rStODgFxArcoHxK2pXJ8z6rURLJ3cbemzL/JSsGKtZ3UxngXp5QDPhSx9zXOSVDdKejFQvF0N186Skadxjo2sEXz3EcJJyijQt43eMQTnpVz5Va5U+4/S5VUolnDj1AePgDaHJZ4</latexit>
Fig. 2. ery rewriting example.
total size of views in V is within a space budget
1
, and (2) the
performance of using views in V to answer queries in Q is
optimized. Figure 1 shows an example with three queries
Q = {q
1
, q
2
, q
3
} and three views V = {v
1
, v
2
, v
3
}. e
execution time of dierent optimization plans are also shown
in Figure 1. e spaces occupied by v
1
, v
2
, v
3
are 111MB,
103MB and 43MB respectively. If the MV space budget is
50MB, we will materialize {v
3
} and utilize it to optimize
q
3
with a benet of (10.67-8.37)+(169.12-167.14)=4.28ms. If
the budget is 120MB, we will materialize {v
1
} and get
a benet of (10.67-4.61)+(0.39-0.26)=6.19ms. If the budget
is 200MB, we will materialize {v
1
, v
3
} and get a benet
of (10.67-3.28)+(0.39-0.26)+(169.12-167.14)=9.50ms. We do not
materialize v
2
, because it does not improve the performance.
ery Rewriting with MVs. Given a set of views V = {v
j
}
and a query q, we select a subset of views, V
k
V , and use
the views in V
k
to answer query q, such that the performance
of answering q with MVs in V is optimized. For example,
given three MVs v
1
, v
2
, v
3
, query q
1
can be optimized using
v
1
and v
3
, and the optimized plan is shown in Figure 2.
B. System Overview
To address the MV generation and query rewriting prob-
lem with MVs, we propose an autonomous MV management
system as shown in Figure 3. e goal of AutoView is to
automatically generate MVs by analyzing the query workload
and utilize the MVs to optimize queries. e system includes
four mo dules, MV candidate generation, MV cost/benet
estimation, MV selection, and MV-aware query rewriting.
1
Our method can also support the case that the total time of generating
views in V is within a time constraint.
MV Candidate Generator. We analyze the workload to
nd common subqueries for MV candidate generation, where
a subquery is a subtree of the syntax tree for relational
algebra. Common subqueries are the equivalent or similar
rewrien subqueries among dierent queries. Common sub-
queries with a high quality will be selected as MV candidates.
Equivalent subqueries will be rewrien in the same form [2],
[3], [9]. And subqueries that have similar selection conditions
will be merged into a large one. For example, “WHERE
country IN (’Sweden’, ’Norway’) GROUP BY country” and
“WHERE country IN (’Bulgaria’) GROUP BY country” will
be merged into “WHERE country IN (’Sweden’, ’Norway’,
’Bulgaria’) GROUP BY country”. We discuss the details of
MV candidate generation in Section III.
MV Estimation. Let V = {v
j
} denote the set of MV
candidates. is module estimates the saved execution time
(called benet) from executing q
i
Q by making use of a
set of views V
k
V . e benet of using V
k
to answer q
i
can be calculated by the formula below:
B(q
i
, V
k
) = t
q
i
t
V
k
q
(1)
where t
q
i
is the execution time of q
i
without using views
and t
V
k
q
is the execution time of executing q
i
using V
k
.
ere are several ways to estimate the benet. e most
straightforward way is utilizing the cost estimation of op-
timizer. e dierence of the COST of a query and the
rewrien query can be the estimation of benet. Due to that
optimizer has a large error on the estimation, we can use
deep learning model [8] as cost estimation. Furthermore, we
propose an RNN model, Encoder-Reducer, to estimate the
benet and embed queries and MVs. Encoder-Reducer will
be introduced in future works.
MV Selection. Given a space budget τ, this module selects
a subset of MV candidates to maximize the total benet of
answering queries in Q within the space budget. We model
this selection problem as an integer programming problem
and propose a reinforcement learning (RL) model to address
it. e details of MV selection are presented in Section IV.
MV-aware ery Rewriting. Given a query, if the query
can be optimized using the MVs, we use our estimation model
2
of 6
免费下载
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文档的来源(墨天轮),文档链接,文档作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论

关注
最新上传
暂无内容,敬请期待...
下载排行榜
Top250 周榜 月榜