
软件学报 ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software,2020,31(8):2453−2464 [doi: 10.13328/j.cnki.jos.005881] http://www.jos.org.cn
©中国科学院软件研究所版权所有. Tel: +86-10-62562563
代数次数的求解算法及其在 SIMON-like 算法中的应用
∗
任炯炯
1,2
,
李
航
1,2
,
林
键
1,2
,
陈少真
1,2
1
(战略支援部队 信息工程大学,河南 郑州 450001)
2
(数学工程与先进计算国家重点实验室,河南 郑州 450001)
通讯作者: 任炯炯, E-mail: jiongjiong_fun@163.com
摘 要: 代数次数作为布尔函数重要的密码学指标,在密码算法的设计与分析中有着重要的应用.主要研究布尔
函数代数次数的求解及其在分组密码 SIMON-like 算法中的应用.首先,在利用真值表求解代数正规型算法的基础上
建立了基于 CUDA 的并行求解架构,协同利用 CPU 和 GPU 的计算资源,极大地缩短了求解代数次数的时间,在较短
的时间内求解了 SIMON32 算法和 SIMECK32 算法任意轮数的代数正规型和代数次数;其次,在 Cube 攻击理论的基
础上,根据代数次数和超多项式取值之间的关系,设计了估计代数次数的概率算法,估计了一般 SIMON-like 算法布
尔函数的代数次数;最后,从布尔函数代数次数的角度出发,给出了 SIMON-like 算法在选择不同循环移位参数表现
的差异性,进而给出循环移位参数的选取依据.实验结果表明,SIMON 算法在原始参数下,达到最大代数次数所需的
轮数最短,原始参数具有更高的安全性.
关键词: 布尔函数;代数次数;SIMON-like 算法;CUDA;Cube 攻击;参数评估
中图法分类号: TP309
中文引用格式: 任炯炯,李航,林键,陈少真.代数次数的求解算法及其在 SIMON-like 算法中的应用.软件学报,2020,31(8):
2453−2464. http ://www.jos.org.cn/1000-9825/5881.htm
英文引用格式: Ren JJ, Li H, Lin J, Chen SZ. Algorithms for solving algebraic degree and its applications to SIMON-like
algorithms. Ruan Jian Xue Bao/Journal of Software, 2020,31(8):2453−2464 (in Chinese). http://www.jos.org.cn/1000-9825/5881.
htm
Algorithms for Solving Algebraic Degree and Its Applications to SIMON-like Algorithms
REN Jiong-Jion g
1,2
, LI Hang
1,2
, LIN Jian
1,2
, CHEN Shao-Zhen
1,2
1
(PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China)
2
(State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China)
Abstra ct : As an important cryptographic criterion of Boolean function, algebraic degree is widely used in the design and analysis of
ciphers. This work mainly studies the algorithm for estimating algebraic degree of Boolean function and its applications to SIMON-like
ciphers. Firstly, by analyzing the algorithm of using truth table to solve algebraic normal form, a parallel solution architecture based on
CUDA is construct ed. The model uses th e CPU and GPU computing r esources collaboratively, which gr eatly reduces the time for solving
algebraic degree. As applications, the algebraic degree of full round function is solved for SIMON32 and SIMECK32 in a short time.
Secondly, based on the Cube attack theory, a probabilistic algorithm for estimating algebraic degree is presented according to the
relationship between algebraic degree and superpoly. The algorithm is applied to estimate algebraic degree of general SIMON-like ciphers.
Finally, from the algebraic degree point of view, the differences of SIMON-like ciphers selecting different cyclic shift parameters are
given, and then some d esign choices for cyclic shift parameters are proposed. The experiment shows that SIMON has short est number of
∗ 基金项目: 国家密码发展基金(MMJ J20180203); 数学工程与先进计算国家重点实验室开放基金(2018A03)
Foundation item: National Cryptography Development Fund (MMJJ20180203); Open Fund of State Key Laboratory of
Mathematical Engineering and Advanced Computing (2018A03)
收稿时间: 2018-06-08; 修改时间: 2019-01-06; 采用时间: 2019-08-07
评论