匿名用户openGauss使用的是哪个优化器,CBO or RBO? 有啥区别?
RBO(Rule-Based Optimization)#
RBO: Rule-Based Optimization也即“基于规则的优化器”,该优化器按照硬编码在数据库中的一系列规则来决定SQL的执行计划。
如在规则中:索引的优先级大于全表扫描。
在RBO中,有着一套严格的使用规则,只要你按照规则去写SQL语句,无论数据表中的内容怎样,也不会影响到你的“执行计划”,也就是说RBO对数据不“敏感”。这就要求开发人员非常了解RBO的各项细则,不熟悉规则的开发人员写出来的SQL性能可能非常差。
但在实际的过程中,数据的量级会严重影响同样SQL的性能,这也是RBO的缺陷所在。毕竟规则是死的,数据是变化的,所以RBO生成的执行计划往往是不可靠的,不是最优的。
CBO(Cost-Based Optimization)#
CBO: Cost-Based Optimization也即“基于代价的优化器”,该优化器通过根据优化规则对关系表达式进行转换,生成多个执行计划,然后CBO会通过根据统计信息(Statistics)和代价模型(Cost Model)计算各种可能“执行计划”的“代价”,即COST,从中选用COST最低的执行方案,作为实际运行方案。
CBO依赖数据库对象的统计信息,统计信息的准确与否会影响CBO做出最优的选择。
目前各大数据库和大数据计算引擎都倾向于使用CBO。
评论
有用 0openGauss优化器是典型的基于代价的优化 (Cost-Based Optimization,简称CBO)。在这种优化器模型下,数据库根据表的元组数、字段宽度、NULL记录比率、distinct值、MCV值、HB值等表的特征值,以及一定的代价计算模型,计算出每一个执行步骤的不同执行方式的输出元组数和执行代价(cost),进而选出整体执行代价最小/首元组返回代价最小的执行方式进行执行。
区别如下:
RBO: Rule-Based Optimization 基于规则的优化器
CBO: Cost-Based Optimization 基于代价的优化器
评论
有用 0
墨值悬赏

